Complexity of Deep Inference via Atomic Flows
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Abstract. We consider the fragment of deep inference free of compmessech-
anisms and compare its proof complexity to other systeriiising ‘atomic flows’
to examine size of proofs. Results include a simulation afdReion and dag-like
cut-free Gentzen, as well as a separation from boundedidepge.

1 Introduction

Deep inference differs from other proof formalisms by allogvderivations themselves
to be composed by logical connectives. There has recendy belot of activity in
the proof complexity of deep inferendé [2], most notablyt tha@ut-free systemkS™,
quasipolynomially simulates Frege systeins [12] [3]. Itasjectured that this can be
improved to a polynomial simulation, so finding lower boufaskS™ is probably as
hard as finding one for Frege, which has escaped proof coityterorists for years.
However this quasipolynomial simulation relies cruciadly the presence of dag-

A
like behaviour, manifested in deep inference by a partrauike, cocontractiomA 1
A

Without it we have a minimal complete system closed undep dleferenceKS. This
system is free of compression mechanisms, in that a proofaangunction can be
‘partitioned’ into proofs of each conjunct, unlike proolfist are dag-like or contain cut.

It is conjectured thaKs is unable to polynomially simulat&S™ [2], raising the
question of exactly where it fits in the hierarchy of proofteyss.

In this paper we focus on upper bounds and simulations to dstrade the relative
strength ofKS. Our arguments emplogitomic flows[10], diagrams that track struc-
tural changes in a proof but forget logical information, bow that cocontraction, and
certain other steps, can be sometimes eliminated from & prgmlynomial time. A
comprehensive introduction to atomic flows can be foundj.[1

Our main result is a polynomial simulation of dag-like cted Gentzen systems
(dagGen™) in KS, improving on the simulation of the tree-like system [in [Zhis
also place«S in the gap between da@en™ and a variation augmented with elimina-
tion rules Gen*), shown in[7] to simulatéS™, thereby quasipolynomially simulating
Frege by the aforementioned result. This is discussedeuithconclusiofi 7)2.

Fig.[ summarises our results, and full proofs of resultstEfound in [8]

2 Deep Inference

We work in propositional logic over the bagis A, \V} with formulae in negation nor-
mal form. Syntactic equivalence of formulae is denated

Definition 1 (Rules and Systems)An inference rulgs a binary relation on formulae
decidable in polynomial time, andsystemis a set of rules. We define the rules we use
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Fig. 1: Relative complexity of systems after results in this paper.

below, and the systeniS = {ail,aw],ac|,s,m}, KST = KS U {aw?, act}, SKS =
KS* U {ait} andKS = {aif,awt,act,s, m}.

We also have a logical rule- which allows us to apply laws of associativity, com-
mutativity and basic equations with unifs [2].

Atomic structural rules Linear logical rules
t f ava AAN[Bv (]
ail aw| — acl § ——Mmm
ava a a (ArB)vC
identity weakening contraction switch
ana a a (AAB)v(CAD)
ait awT — act m
f t ana [Av C|A[BvV D]
cut coweakening cocontraction medial

Definition 2 (Proofs and Derivations).We define derivations, and premiss and conclu-
sion functionsr, cn resp.), inductively. Every formuld is a derivation withpr(A) =
A = cn(A). For derivations?, ¥: if x € {A, V} then® x ¥ is a derivation with premiss

cn(P) , @
is an instance of a rule, p —
pr(¥) v
is a derivation with premisgr(®) and conclusioren(¥%).
If pr(®) = t then we callp a proof. If ¢ is a derivation in a syster§ with premiss

pr(®) * pr(¥) and conclusioren(®) x cn(¥); if »

A
A, conclusionB, we writes||s. If A =t, i.e.® is a proof, we Writeégs.
B
Proposition 3 ([1]). Each rulep below is derivable ifs, m, ap}:
ot f AV A CANA A A
Yava Ma YTa T v Taaa

We will use the above ‘generic’ rules as abbreviations feirtterivations.
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Fig. 2: Local rewriting rules for the systemorm.

Definition 4 (Complexity). We define thaize|®| of a derivation® to be the number
of atom occurrences i. A systensS p-simulatesa systeni/ if each7-proof can be
polynomially transformed into af-proof of the same conclusion.

3 Atomic Flows

Definition 5 (Atomic Flows). For an SKS derivation ¢ we define itsatomic flow
f1(2), to be the diagram obtained by tracing the path of each ataoutyh the deriva-
tion, designating structural rules by the following copesnding nodes:

t f ava
ail — aw| — — acl —
T o\
a a
— awt — — L act —
L1 t ana A

We consider flows as graphs embedded in the plane with theses tof nodes
above. Note that edges mayiendingat either end.
We define thsizeof a flow¢, denoted¢|, to be its number of edges.

Definition 6. We define a rewriting systenorm on flows in Fig[P.

Proposition 7 ([10]). norm is terminating and confluent.

Notation 8 If a flow ¢ is the normal form of a flowp under a terminating, confluent
rewriting systenr, then we writep — ).
r

Definition 9. If R is a relation on atomic flows we say th&t lifts polynomially to
SKS if, whenevel fi(®), 1) € R, we can construct a derivatios in time polynomial
in |@| + || with the same premiss and conclusionfaand atomic flowy.
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Theorem 10 ([10]).— lifts polynomially toSKS.

Corollary 11. If ¢ is the flow of &KS™ proof,¢ —s ¢ theny is the flow of &S proof.

Example 12.In Fig.[3 we give a derivation, its flow and a reduction unagim.

We consider atoms to be positive or negative, under some assignment of polar-
ity. We use the terms ‘upwards’ and ‘downwards’ with regarderivations and flows,
interpreted in the natural way, independently from thearotif direction defined below.

Definition 13 (Paths). To each edge we assign a direction: downwards if the atom
associated with it is positive, upwards if it is negative.
We define gathin a flow to be a directed path between pending edges.

Example 14.We give the following flow and all its paths:
-+ o+ - *

23679, 23678,
4578, 4579,
1.

where+, — indicate the polarity of the atom associated with an edgédeuisome
assignment, angd indicates that either polarity may be correctly assigned.
Notice that the number of paths is invariant under validgassients of polarity.

The following results allow us to estimate the size of thenmairform of a flow,
undernorm, without actually constructing it.

Observation 15 Reducing undetiorm conserves the number of paths in a flow.

Recall that, in a proof, there are no assumptions, and soaefla proof can have
no edge with upper end pending; it must be attached to anitgentveakening node.
Let #(p, ¢) be the number of-nodes in a flowp, and™ ¢ be its number of paths.

Observation 16 If ¢ is the flow of &S proof, then™ ¢ = #(ail, ¢).
Theorem 17. If ¢ is the flow of &KS™ proof, ¢y — 1, then|y)| = O(|¢| + "¢7).

Proof. Decompose) into its identity fragment); and weakening fragment,. Note
that each rule involvingv] or w1 reduces the size of the flow, $0.| < |4|.

Notice that|y1| = 2 - #(ail, ¥1) + #(acl, ). However, clearly, the number of
contractions cannot outnumber the number of edges emgrfatim identity steps, so
we havey | < 4-#(ail,1). By Obs[16 we then have);| < 4T+, and by Obd 115
that|y,| < 4-T¢", whencely| = [¢1] + [vof <[4 +4-To™.

Remark 18.The main contributor to an increase of flow size reducing undem is
the rulec|-ct. It can sometimes cause an exponential blowup [10].
The following proposition estimates the increase in siaesed byc|-ct.

Proposition 19. If in every directed path of a flow there are at most alternations of
act andac| nodes thefi ¢ = |¢|O*).



N = — ava
v t Ad fv(ina) acl
a = a Vv awl] — a

\/( /\(1)

acl

a
Fig. 3: An example of a derivation, its flow and a reduction unaleim.

4 Truth Tables and Tableaux

Bruscoli and Guglielmi have proved that tree-like cut-ff@entzen cannot p-simulate
KS, by way of the Statman tautologiés [2]. We offer a new proaéheia truth tables.

Observation 20 A truth table proof for a formulad has sizd A| - 2#4, where#A is
the number of distinct propositional variables.ih

Lemma 21. KS™ p-simulates truth tables.

Proof. Let 7 be a tautology. For each partial assignmdntlefined on just those atoms
appearing inr construct a derivatio® 4 (7) by structural induction om:

D A(B)

a ., GA(ANB)=Du(A)ADA(B) . Pa(AvB)=  f

@
Ala) wivn
A

where, in the last case, wheris a disjunction, choose a disjunBtthat is true under
A. Itis clear that eaclp 4(7) has conclusion and premiss a conjunction of literals;
moreover this conjunction of literals is satisfied Ay

Let~ 4 be the conjunction of all literals satisfied bysuch that each literal appears

YA
at most once. Then there is a derivation of the form: || {awt,act}.

pr(P.4(7))
By distributivity, derived on the left, we can construct a@f ¥ of \/ ;7.4 in
{ai}, act,s, m}, and then apply contractions to obtain the proof, on thetrigh

Wﬂ{aii,ac']‘,s,m}

cTAAAA[BVC] A
= BvClnA ||{aWT,ac']‘}
Vv A
Distributivity: A ns D CIA Vo er(2a)
Bv(CnA) Pl {wl}
T AAN[BV(A T
. ANBV(AAC) e

(ArB)V(AAC) r



Theorem 22. KS p-simulates truth tables.

Proof. In the above proofs att steps are above all. steps, so by Prop. 119 the number
of paths is polynomial in the size of the flow. The result falfoby Thms[ 17 and10.

Notation 23 Let tree/dagGen™ denote cut-free Gentzen with tree/dag proofs resp.
Proposition 24 ([€]). TreeGen~ cannot p-simulate truth tables.

Corollary 25. TreeGen™ cannot p-simulatés.

Proof. Immediate from Prof._24 and Thin.122.

5 Separations via the Functional Pigeonhole Principle

We showGen™, Resolution and bounded-depth Frege systems cannot paséids,
by reducing undernorm Jefabek’sS™ proofs of the functional pigeonhole principle.
Conversely we give a simulation of Resolution, and somensibas, inkS.

5.1 Polynomial-Size Proofs of the Functional Pigeonhole Rrciple

The functional pigeonhole principle is a class of proposidil tautologies asserting that
there is no injective function from a set of sizet 1 to a set of sizen.

Definition 26 (Functional Pigeonhole Principle).

n n—1 n n—1 n
e, =\ Ay VNV agnag) VY G
=0 j=1 =0 j=1 j'=j5+1 j=11i=0 i/ =i+1

Theorem 27 ([15][14]).Bounded-depth Frege has only exponential-size prodfREP,,.
Corollary 28. Resolution andsen™ have only exponential-size proofskdtHP,,.
Theorem 29 ([4]).There are polynomial-size Frege proofs/éfHP,,.

Proposition 30 ([2]).SKS is polynomially equivalent to Frege systems.

Lemma 31. EverySKS proof ¢ of a formulaA can be polynomially transformed to a
KS proof of A v \/,(a; A a;), wherea; are the distinct propositional variables iA.

Lemma 32 ([12]).There are polynomial-size proo, in KS™ of FPHP,,.
Proof (J&abek).By Thm.[29, Prop—30 and Lemrfial31 we can bulsl proofs®,, of
FPHP,, v \/ (aU A a;;) that have size polynomial in. For each atomu,; we con-

struct a denvauo@g st in KST\ {acl} from a; A as: to FPHP,,, on the left below, and
apply contractions to obtain the proof, on the right:

_ Agt N dst
- t qsn”Ks
Agt N a + ANl - _
2.5 T Ns s Vs ij N ij
. y FPHP, v \/ | v |Ks+\{ac¢}
n-act A Qsj ’ @7
Y R FRHP,
j [l {s} (cl}
" Ve st A s FPHP,,

FPHP,,



Theorem 33. There are polynomial-size proofs i¢6 of FPHP,,.

Proof. In ©,, above, there are 2 alternations betwegrndct nodes, sé f1(©,,)" =
|f1(0,)|°® by Prop[I9. The result follows by Thnis]17 10.

Corollary 34. Gen™, Resolution, bounded-depth Frege cannot p-simi&e

Proof. Immediate from Thn{_27, Cdr. 28 and Thim] 33.

5.2 A Polynomial Simulation of Resolution and Some Extensits

We give a p-simulation of resolution systems«8, first noticed in[[9].

Definition 35. We defindResolutionby the following CNF rewriting rules:
An[BvalnalavC] An[Bvaval AArB AArB

RES = < res ,acl , dag ,awl

An[BVC] An[BVal AANBAB ﬁA[Bvb]

modulo associativity and commutativityR&S refutation is a derivation||res.
f‘

Proposition 36. Definew/-it: 1_| — L andw = {wl-ct,wl-wt, wl-it,wi-c|}.
Thenw is terminating, confluent ands lifts polynomially toSKS. [10]

Lemma 37. RES refutations can be polynomially transformed to one&Hh

Proof. We derive a generalisatiois’ of res on the left, and eliminatec|-steps by the
translation on the right. Finallgw] steps are eliminated by Prdp.]36.

[BvC]A[C v D] )
2§ —mMm ———————— aVva a
ChaC B Vac Alav D) [Bvavala |act —— Vv D
Bvit vD a — ana
res BvD res’ BvD
= v v
BvD

Lemma 38. We can transform &S refutation ofA in linear time to akS proof of A.

Proof (Sketch):Flip’ the refutation upside-down, replace every formuldhits nega-
tion and every ‘up’ rule with its corresponding ‘down’ rule.

Theorem 39. KS p-simulates Resolution systems.
Proof. Immediate from Lemmafa88 ahdl37.

Finally, the simulation above can be extended to some batnsions of Resolu-
tion, introduced by Krajicek[13], where literals are laged by conjunctions of literals.

Definition 40. RES(f) consists of the rules &ES, with atomic variables varying over
AN[BVA;ail A [A; b v C

An[Bv (/\iaiA/\jbj)VC].

Additionally, in a derivatior, no conjunction of literals may be larger thgit|®|).

conjunctions of literals, and the rule

Proposition 41. KS p-simulateRES( f) for any functionf.
Proof. A is derivable in{s}, and the old rules can be dealt with as before.
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6 A Simulation of Dag-Like Cut-Free Gentzen

We considefen in its one-sided variation, e.§S1p in [16], and identify sequents with
the disjunction of their formulae, as an abuse of notation.

We now give a translation of dag-like cut-free Gentzen pdofkKS™, and then
KS. Naively we could just apply a generic cocontraction to dateieach dag-step,
duplicating the entire sequent, but this may lead to an eapitial blowup reducing
undermorm by Rmk[T38.

Instead we notice that, when two branches of a dag step avglrtogether by a
A step, we only need to cocontract the formulae which are comamgestors to the
conjuncts of the\ step. For example:

; A B, C r A

®TABC LABC — w VT A vBvC
A I'vrh wl A wl
I'T[AvB]r[AvC],B,C AvB AvC

When there are other rules between the dagrastgps, we can translate them into deep
steps, inside the conjunctidA v B] A [A v C] above, for example.

Definition 42. For a sequent” and formulaA occurring in aGen™ derivationr, let
Ancp(A) denote the set of ancestorsfoccurring inI".

Definition 43. A contraction loogn a flow ¢ is a (ct, c|) pair of nodes(vy, 12) in ¢,
with v aboversy, where there are two (or more) disjoint paths betweeandvs.

Lemma 44. There is a polynomial transformatiofi from dagGen™ derivations to
KS™ satisfying the following properties:

r r _ r
T: |treeGen™ — ||KS I X
dag ct
I r [v/ v XrX
r r T: ’dagcen* dagGen~  — x| ks
nl Tl e s Rv(AAB)
T: A — A A ’ ’ = [v/ v R
772” T7T2“ A,A/\B,E “KSV(A/\B)
b)) X AvY

whereX = Ancp(A) NAncr(B)andI” = I'\ X, R is some formula, and there are
no contraction loops iw.

Observation 45 If 7 is a dagGen™ derivation then, by the subformula property and
the properties in Lemnia}#3, there are no contraction loop#{T'r).

Lemma 46. If there are no contraction loops in a flogvthen™ ¢ is polynomial in|¢|.

\/
Proof. Definec: /&\Y/ — /Z\ c is terminating, confluent and if — v then|¢| = ||

and"¢" < "¢ If ¢ has no contraction loops then, in all c|-nodes are above all
ct-nodes. SG ¢ < Tp7 = [1h|9C) = |¢|9C) by Prop[I9.



Theorem 47. KS p-simulates dag-like cut-free Gentzen systems.

Proof. Immediate from Ob$.45, Lemmadial46] 43 and THmE[_1I7, 10.

7 Conclusions

We have seen thdS is a surprisingly powerful system, despite lacking any naech
nism to compress proofs. As well as the simulations of Reéwoland dag-like cut-free
Gentzen, it cannot be p-simulated by bounded-depth Fregeofthe strongest ‘weak’
systems, and also has polynomial-size proofs of the funatipigeonhole principle.

7.1 Atomic Flows as a Tool for Complexity Analysis

Atomic flows are a useful tool to analyse and manipulate déaws; often we can avoid
the possibly exponential blowup in eliminating cocontiaas. Further work could in-
vestigate whether we can always avoid this blowup, via d lmcglobal flow reduction.

7.2 Dag-Like Cut-Free Gentzen Systems and Variations
Results in[[7] show that the addition of elimination ruleslfiw) to dagGen™ resultin
a systenGen* that is p-equivalent t&tS™, and so quasipolynomially simulates Frege.

I''AvB I''ArB I''ArB
A-Elim-L A-Elim-R

I'A,B A I'B

V-Elim

On the other hand we showed that, without these modificatiésis cannot even p-
simulateKsS, and in fact thaks fits neatly between these two variations:

dagGen~ < KS <, KST = Gen* <, Frege

The restriction on proofs caused by the subformula propsggms to be critical; it
would be interesting to investigate its effects on proof ptarity in general.

We regardKS to be an uncompressed system: every proof of a conjunetiorB
can be partitioned into a proof of and a proof ofB, with no sharing between them,
by substituting for one of the conjuncts and reducing every line in the prgofh

Consequently, for any da@en™ proof of a conjunctiord A B there arekS proofs
of A and B whose sizes sum to the size of the initial proof, for someamotf size
globally accurate up to a polynomial. We thus argue that liagisg effect of dagness
in cut-free Gentzen systems serves solely to do some of tHeafdeep inference, but
not all of it due to the strict separation between the twoesyst

We notice that the separationl§$ and treeGen™ in [2] is in fact just a special case
of Thm.[47, since dag-like cut-free Gentzen has polynosizd-proofs of the Statman
tautologies([b].

7.3 Stronger Systems

We showed that bounded-depth Frege cannot p-sim#latbut did not consider the
other direction. We conjecture that they are incomparahle,to the dissimilar ways
they are defined. Similar questions persist for other ‘geshsystems, e.g. Cutting
Planes, although ongoing research suggests we may be aditaio a separation of
KS from Cutting Planes.
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