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Abstract

We survey algorithmic complexity results for reasoning in several classes of algebras
with Kleene star, with an emphasis on the residuated ones, in the sense of their equational
theories.

1 Introduction

Iteration, or Kleene star, is one of the most interesting algebraic operations which appear in the-
oretical computer science. Being an inductive object, iteration extends a purely propositional,
algebraic logic setting with interesting features usually found in more expressive systems, like
arithmetic or higher order inductive types theories.

The notion of residuated Kleene algebra, or action algebra, was introduced by V. Pratt [26] as
an extension of traditional Kleene algebras [11] by means of residuation, or division operations.
D. Kozen [13] further extended action algebras to action lattices, which include both meet
and join (while Pratt’s action algebras, as well as Kleene algebras are only join-semilattices).
One also has to distinguish the class of all residuated Kleene algebras (lattices) from the more
specific class of *-continuous ones. In the former class, the Kleene star is defined in an inductive
manner, as a fixpoint; for the latter, iteration of a is, roughly speaking, the supremum of an.

In this essay, we survey algorithmic complexity results for reasoning in these classes of alge-
bras in the sense of their equational theories. The choice of such a weak language (considering
only generally true equations) is motivated by the fact that already the Horn theory even for
Kleene algebras, without meet and residuals, reaches the maximal possible complexity. Namely,
for the *-continuous case it is Π1

1-hard, and for the general case it is Σ0
1-hard [15], which coin-

cides with the easily-proved upper bounds that come from the syntax of the logics axiomatising
these theories.

For a quick start, we define a Kleene algebra as an algebraic structure with two binary
operations, · (product) and ∨ (union, also denoted by +), the unit constant 1, and one unary
operation, ∗. The product and the unit impose a monoid structure; ∨ makes the structure
a join-semilattice. The product is distributive over join: a · (b ∨ c) = (a · b) ∨ (a · c) and
(a ∨ b) · c = (a · c) ∨ (b · c). This entails monotonicity of the product w.r.t. the semilattice
preorder ≺.

One can also impose the existence of the zero object, 0, as the smallest element of the
semilattice. The zero object is also required to be the zero w.r.t. the product, 0 · a = a · 0 = 0.
In other words, ·, ∨, 1, and 0 form a structure of an idempotent ring. Throughout this paper,
we do not use the zero constant, but our results are also valid in the presence of 0.

Iteration, a∗, is defined as an element which is simultaneously the smallest (in the semilattice
preorder �) b such that 1 ∨ ab � b and the smallest c such that 1 ∨ ca � c (i.e., a∗ is both the
left and the right iteration of a). A Kleene algebra is *-continuous, if for any a, b, c we have
b · a∗ · c = sup�{b · an · c | n ≥ 0}.

Kleene lattices are Kleene algebras with ∧, which is the lattice meet operation. They were
introduced by Kozen [13] in order to gain closure under matrix formation. Finally, residuated



Complexity of Reasoning in Residuated Kleene Algebras Stepan Kuznetsov

Kleene lattices (algebras), or action lattices (resp., algebras) are obtained by adding two division
operations (residuals), \ and /, obeying the following principles (which are essentially due to
Lambek [20]): b � a \ c ⇐⇒ a · b � c ⇐⇒ a � c / b. Removing ∨ and ∧ from the signature of
action lattices results in residuated monoids with iteration.

In the next section, we provide sequential axiomatisations for the (in)equational theories,
or algebraic logics, of these classes of structures.

The results on the complexity of these theories we feature in this paper, both previously
known and new, are summarised in the following table. For comparison, we also included results
on structures without iteration, namely residuated monoids and residuated lattices.

general *-continuous
Kleene algebras PSPACE-complete (D. Kozen 1994 [12])
Kleene lattices open problem open problem
action algebras Σ0

1-complete Π0
1-complete

(new) (W. Buszkowski, E. Palka 2007 [4, 23])
action lattices Σ0

1-complete Π0
1-complete

(new: LICS 2019 [19]) (W. Buszkowski, E. Palka 2007 [4, 23])
residuated monoids open problem Π0

1-complete
with iteration (new: submitted to a journal [18])

residuated monoids NP-complete (M. Pentus 1996 [24])
residuated lattices PSPACE-complete (M. Kanovich 1994 [9])

Let us comment a bit on the second line of this table, concerning Kleene lattices. To the best
of the author’s knowledge, the complexity for their equational theories, both in the general and
in the *-continuous case, is still an open question. A conjecture could be formulated however,
that the theory is decidable and belongs to EXPSPACE, based on known results for more
specific classes of Kleene lattices [1, 3, 21, 6]. The lattices considered in the papers cited here,
however, are distributive [6], which is not the case for Kleene lattices in general.

2 Calculi for Equational Theories

The (in)equational theory of residuated lattices (without iteration) is described by MALC,
the multiplicative-additive Lambek calculus [22]. Sequents of MALC are of the form Π ` β,
where β is a formula (built from variables using residuated lattice operations) and Π is a finite,
possibly empty, linearly ordered sequence of formulae. The empty sequence is denoted by Λ.
A sequent α1, . . . , αn ` β is interpreted as α1 · . . . · αn � β; Λ ` β means 1 � β. Axioms and
inference rules of MALC are as follows.

α ` α (ax)
Π ` α Γ, β,∆ ` γ
Γ,Π, α \β,∆ ` γ

(\ `)
α,Π ` β
Π ` α \β

(` \) Γ, α, β,∆ ` γ
Γ, α · β,∆ ` γ (· `)

Γ,∆ ` γ
Γ,1,∆ ` γ (1 `)

Π ` α Γ, β,∆ ` γ
Γ, β / α,Π,∆ ` γ

(/ `)
Π, α ` β
Π ` β /α

(` /) Γ ` α ∆ ` β
Γ,∆ ` α · β (` ·)

Λ ` 1
(` 1)

Γ, αi,∆ ` γ
Γ, α1 ∧ α2,∆ ` γ

(∧ `)i, i = 1, 2
Π ` α1 Π ` α2

Π ` α1 ∧ α2
(` ∧)

Γ, α1,∆ ` γ Γ, α2,∆ ` γ
Γ, α1 ∨ α2,∆ ` γ

(∨ `)
Π ` αi

Π ` α1 ∨ α2
(` ∨)i, i = 1, 2

2
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The logic for action lattices, ACT (action logic), is obtained from MALC by adding the
following rules.

Λ ` β α, β ` β
α∗ ` β (∗ `)fp

Λ ` α∗ (` ∗)0 Π ` α ∆ ` α∗
Π,∆ ` α∗ (` ∗)fp

Π ` α Γ, α,∆ ` γ
Γ,Π,∆ ` γ (cut)

In this formulation of ACT, we formulate the rules for Kleene star without left contexts. One
could add these context, making the rules more Gentzen-style, like Jipsen [8] and Pentus [25]
do. However, as discussed below, this does not help with cut elimination.

The logic for *-continuous action lattices, ACTω (infinitary action logic), is an extension
of MALC with the following rules.(

Γ, αn,∆ ` γ
)
n∈ω

Γ, α∗,∆ ` γ (∗ `)ω
Π1 ` α . . . Πn ` α

Π1, . . . ,Πn ` α∗
(` ∗)n, n ∈ ω

Notice that we include cut as an official rule of the system only in ACT. Indeed, in ACTω,
as shown by Palka [23], cut is eliminable, while for ACT no cut-free system is known. An
attempt to construct such a system was taken by P. Jipsen [8], but Buszkowski [4] showed that
in Jipsen’s system cut is not eliminable.

All these systems are sound and complete w.r.t. the corresponding classes of algebras, by
Lindenbaum – Tarski construction.

3 Reasoning in Action Lattices

3.1 Reasoning in Action Lattices: Undecidability

In this section we prove undecidability of ACT as well as all logics between ACT and ACTω,
extending Buszkowski’s [4] technique of proving Π0

1-hardness of ACTω.

Theorem 1. Any L, such that ACT ⊆ L ⊆ ACTω, is undecidable.

The proof of this theorem is based on encoding behaviour of deterministic Turing machines
via the totality property of context-free grammars. Usually, in undecidability proofs one takes
care about halting vs. non-halting of a Turing machine on a given input. Here we distinguish
three possible kinds of behaviour of a Turing machine M on input x:

1. M halts on x;

2. M trivially cycles on x;

3. M, when running on x, does not halt for another reason.

The notion of trivally cycling is defined as follows. In what follows, we consider only deter-
ministic, single-tape, single-head Turing machines.

Definition 1. A state qc of a Turing machine M is a cycling one, if all rules of M for this
state do not change the configuration (i.e., the rules are of the form 〈qc, a〉 → 〈qc, a,N〉, for any
letter a of the internal alphabet; N stands for “no move”).

Definition 2. A Turing machine M trivially cycles on input word x, if M reaches a cycling
state qc while running on x. The class of pairs 〈M, x〉 where M trivially cycles on x is denoted
by C.

3
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The notion of trivially cycling is essentially equivalent to reachability of the designated state
qc. For our exposition, however, it is more convenient to consider the case of trivially cycling
as a subcase of non-halting. Therefore, we force the Turing machine to get stuck in qc forever
and thus forbid halting after reaching qc.

There is also a more general notion of cycling on a given input, when M returns to the same
configuration (and therefore runs infinitely long).

Definition 3. A Turing machine M halts on input word x, if it reaches a configuraton from
which there is no next move (thus, we do not distinguish “successful” computations from those
which halt by error). The class of pairs 〈M, x〉 where M halts on x is denoted by H. Its
complement, i.e., the class of pairs 〈M, x〉 where M does not halt on x, i.e., runs infinitely, is
denoted by H.

Evidently, C ⊂ H, and we shall use a folklore fact that C and H are recursively inseparable:

Proposition 1. The classes C and H are recursively inseparable, i.e., there exists no decidable
class K such that C ⊆ K ⊆ H.

Next, we encode each configuration of a Turing machine as a1 . . . ai−1qai . . . am (where q
is the state, and the word in the memory is a1 . . . am, ai being observed), and the protocol of
execution is #k0#k1# . . .#kn#, where k0 = q0x is the initial configuration, and each ki is the
successor of ki−1; # is a fresh symbol. The protocol is a halting one, if kn has no successor.

Some encodings, in order to simplify proofs a bit, make configurations in a protocol alter-
natingly reversed (#k0#kR1 #k2#kR3 # . . .); however, in Kozen’s textbook [14] one can find an
encoding without reversions.

Let us fix M and its input word x. In order to describe all the words except the halting
protocol of M on x by a context-free grammar GM,x, we consider three classes of such words.

First, there are words beginning with # which cannot be even a prefix of a halting protocol.
These include all words, which either

• include qc, where qc is a cycling state.

• or include a block between #’s, which is not a code of a configuration;

• or include a block of the form #k#k′#, where k′ is not the successor of k;

Second, there are possibly incomplete protocols. These include

• words whose last symbol is not #;

• words of the form u#k#, where k is a configuration which has a successor.

Third, there are words not beginning with #.
Now we are ready to construct GM,x, which is going to be a context-free grammar in

Greibach [7] normal form. All words of the first class form a context-free language (cf. [14],
adding extra rules for words including qc). If we remove the leftmost #, the language remains
context-free. Let us write down a grammar for it in Greibach normal form and let its start-
ing symbol be Y . For the second class, we have the same, since these words form a regular,
and therefore context-free, language. The grammar for this language, with the leftmost #’s
removed, has starting symbol Z. We can suppose that the sets non-terminal symbols of the
two grammars are disjoint. Next, we put things all together:

S → bU, for all b 6= # U → aU, for any a Y → . . .

S → #Y U U → a, for any a Z → . . .

S → #Z S → a for all a

4
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Notice that U , which generates all non-empty words, appears in the second, but not in the
third production rule. As mentioned above, any word which has a prefix from the first class is
necessarily not the halting protocol. For the second class, this is not the case.

By construction, GM,x generates all non-empty words if and only if there exists no halting
protocol, i.e., M does not halt on x.

Let us now translate GM,x to the Lambek calculus. The construction essentially resembles
the translation of context-free grammars to basic categorial grammars by Gaifman [2]. Let
non-terminals of GM,x be Lambek variables. For each letter a let

ϕa =
∧
{(A/(B1 · . . . ·B`) | (A→ aB1 . . . B`) is a production rule of GM,x}

(in particular, for a production rule of the form A → a we have ` = 0, and A/(B1 · . . . · B`)
means just A), and let

ψM,x =
∨
a

ϕa.

Proposition 2. A word a1 . . . an is generated from non-terminal A in GM,x if and only if the
sequent ϕa1

, . . . , ϕan
` A is derivable in MALC. [2, 4]

This lemma is easily established by induction on the size of derivations (in both directions).

Proposition 3. GM,x generates all words of length n iff ψn
M,x ` S is derivable in MALC. [4]

Corollary 4. GM,x generates all non-empty words iff ψ+
M,x ` S is derivable in ACTω.

Recall that ψn = ψ, . . . , ψ (n times) and ψ+ = ψ · ψ∗.

Corollary 5. M does not halt on x (i.e., 〈M, x〉 ∈ H) iff ψ+
M,x ` S is derivable in ACTω.

Our new key lemma is as follows:

Lemma 6. If M trivially cycles on x, then ψ+
M,x ` S is derivable in ACT.

Proof. For simplicity we write just ψ for ψM,x. First we show derivability of ψ+ ` U in ACT.
Informally, this means that already ACT “knows that” U generates all non-empty words.

ψ ` U
Λ ` ψ \U

(` \)
ψ ` ψ

ψ ` U /U
ψ,U ` U (` /), inverted

U ` ψ \U
(` \)

ψ,ψ \U ` ψ \U
(\ `)

ψ∗ ` ψ \U
(∗ `)fp

ψ,ψ∗ ` U (` \), inverted

ψ+ ` U
(· `)

The sequents ψ ` U \U and ψ ` U are derivable (in MALC, and therefore in ACT), since
U \U and U are included in all ϕa conjunctions.

Next, ψ+ ` S is derived using the “long rule,” which is admissible in ACT (for any fixed
n ≥ 1):

ψ ` S ψ2 ` S . . . ψn ` S ψn, ψ+ ` S
ψ+ ` S

5
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Since M trivially cycles on x, there is a correct (incomplete) protocol which includes qc. Let n
be the length of such a protocol, in symbols (not the number of states!).

The first n sequents, ψ ` S, . . . , ψn ` S, are derivable by Proposition 3, since GM,x indeed
generates all non-empty words. As for ψn, ψ+ ` S, it is derived from all sequents of the form
ϕa1 , . . . , ϕan , ψ

+ ` S, by the left rule for disjunction. By cut with ψ+ ` U , this sequent is
derivable from ϕa1

, . . . , ϕan
, U ` S. In order to derive the latter, consider two cases.

Case 1: a1 6= #. Then S /U is inside ϕa1 , and U /U is inside ϕa2 , . . . , ϕan . Thus, our
sequent is derivable from S /U,U /U, . . . , U /U,U ` S.

Case 2: a1 = #. Then ϕa1
includes S /(Y · U), and we derive as follows:

ϕa2
, . . . , ϕan

` Y U ` U S ` S
S /(Y · U), ϕa2

, . . . , ϕan
, U ` S

(` ·), (/ `)

ϕa1
, ϕa2

, . . . , ϕan
, U ` S (∧ `)

The sequent ϕa2 , . . . , ϕan ` Y is derivable by Proposition 2, since a2 . . . an includes qc and is
therefore derivable from Y in GM,x.

Now, for an arbitrary logic in the language of ACT and ACTω, let

K(L) = {〈M, x〉 | ψ+
M,x ` S is derivable in L}.

(Formally speaking, a “logic” is just an arbitrary set of sequents, so “derivable in L” formally
means “belongs to the set L.” When a logic is defined by a calculus, like ACT or ACTω, this
set is the set of theorems of the logic.)

If ACT ⊆ L ⊆ ACTω, then Corollary 5 and Lemma 6 yield the following:

C ⊆ K(ACT) ⊆ K(L) ⊆ K(ACTω) = H,

and by inseparability of C and H (Proposition 1) K(L) is undecidable for any L between ACT
and ACTω, and so is L itself. This finishes the proof of Theorem 1.

3.2 Cyclic Systems for Action Logic

The idea of the undecidability proof explained above is much inspired by cyclic calculi for
action logic [5, 16] (in particular, cycling of a Turing machine reflects as a cyclic proof of its
non-halting), though these calculi are not explicitly used in the proof itself.

These cyclic systems also give an interesting example of a logic strictly between ACT and
ACTω. Let us recall the definitions of non-well-founded and cyclic proof systems for action
logic. As shown by Das and Pous [5], the rules for iteration in ACTω can be equivalently
replaced by the following ones:

Γ,∆ ` γ Γ, α, α∗,∆ ` γ
Γ, α∗,∆ ` γ (∗ `)′

Λ ` α∗ (` ∗)0 Γ ` α ∆ ` α∗
Γ,∆ ` α∗ (` ∗)fp

now allowing non-well-founded derivations. More precisely, a preproof is an arbitrary derivation
tree, possibly with infinitely long branches. A preproof is considered a valid derivation, if it
obeys a certain correctness condition. Namely, every infinite branch should contain an infinite
thread of occurrences of α∗, connected by the immediate ancestry relation, which undergoes
principal applications of (∗ `)′ infinitely many times. Let us denote this system by ACT∞.
Cut in ACT∞ is eliminable [5].

6
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The cyclic fragment of ACT∞, denoted by ACTcycle includes only regular derivations,
that is, derivations with only a finite number of non-isomorphic subtrees. These derivations
are allowed to use cut, which is in general not eliminable here: the cut elimination procedure
could transform a regular tree to an irregular one. As shown by Das and Pous [5], ACTcycle is
equivalent to ACT.

As one can notice, rules of ACT∞ are asymmetric (left-handed). Consider the dual rules:

Γ,∆ ` γ Γ, α∗, α,∆ ` γ
Γ, α∗,∆ ` γ (∗ `)′r

Γ ` α∗ ∆ ` α
Γ,∆ ` α∗ (` ∗)fp;r

The interesting fact is that adding these rules to the cyclic subsystem ACTcycle yields a system
which is strictly stronger than ACT. Let us denote the new, symmetric system by ACTbicycle.
This system admits the following “induction-in-the-middle” rule:

Λ ` β α ` β α, β, α ` β
α∗ ` β

Using this rule, one can derive (p∧q∧(p / q)∧(p \ q))+ ` p, which is not derivable in ACT [17].
On the other side, ACTbicycle is still strictly included in ACTω. On one hand, ACTω

proves “induction-in-the-middle” and thus subsumes ACTbicycle. On the other hand, these
systems could not coincide due to complexity reasons: ACTbicycle is recursively enumerable,
while ACTω is Π0

1-hard (see the next section). Thus, ACTbicycle is a natural example of a
system strictly between ACT and ACTω.

3.3 Reasoning in Action Lattices: Complexity

In this section we show that our construction actually gives more than just undecidability.
Namely we provide exact complexity bounds for ACT and ACTbicycle by proving their Σ0

1-
completeness. The infinitary system ACTω, in its turn, is Π0

1-complete. The lower bound,
Π0

1-hardness, follows from K(ACTω) = H. The upper bound was proved by Palka [23] using
her *-eliminating technique, and also follows from cut-elimination results in non-well-founded
proof systems for action logic by Das and Pous [5].

We follow a general road to obtain Σ0
1-completeness results from recursive inseparability,

noticed by Speranski [30]. The idea is to use effective inseparability instead of the usual one.
The methods used are rather classical; we refer to Rogers’ textbook [27] for concrete statements.

Definition 4. Let Wu be the domain of the partial function computed by Turing machine with
code u (i.e., “the u-th recursively enumerable set”). A disjoint pair of sets A and B is called
effectively inseparable, if there exists a computable function f with two arguments, such that
if A ⊆Wu, B ⊆Wv, and Wu ∩Wv = ∅, then f(u, v) is defined1 and f(u, v) /∈Wu ∪Wv.

Intuitively, effective inseparability means that any attempt to separate A and B by a pair of
recursively enumerable sets Wu and Wv = Wu (which would then, being complements of each
other, be both decidable) is uniformly falsified by the function f , which provides an element
which belongs neither to Wu not to Wv.

One can easily notice that if A and B are effectively inseparable, A ⊆ A′, B ⊆ B′, and
A′ ∩B′ = ∅, then A′ and B′ are also effectively inseparable (one just takes the same f).

We use the following known facts on effective inseparability.

1In the usual definition of efficiently inseparable sets, f is allowed to be partial. Requiring f to be total,
however, yields an equivalent definition [29, Exercise 4.13(a)].

7
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Proposition 7. If A and B are effectively inseparable and are both recursively enumerable
(belong to Σ0

1), then they are both Σ0
1-complete. [27, Exercise 11-14].

Proposition 8. Classes C and H are effectively inseparable. [27, Exercise 7-55(d)]

These propositions immediately yield the following theorem.

Theorem 2. If ACT ⊆ L ⊆ ACTω and L is recursively enumerable, then L is Σ0
1-complete.

In particular, ACT and ACTbicycle are Σ0
1-complete.

Proof. Obviously, ACT and ACTbicycle, as well as the C and H classes, are recursively enu-
merable (i.e., belong to Σ0

1).
Recall that C ⊆ K(ACT) ⊆ K(L) ⊆ K(ACTω) = H. Since C and H are effectively

inseparable (Proposition 8), so are K(L) and H. By Proposition 7, this yields Σ0
1-completeness

of K(L). Since L subsumes K(L), it is also Σ0
1-hard; the upper Σ0

1 bound is given.

4 Restricting the Language

4.1 Reasoning in Action Algebras

Action algebras, as defined by Pratt [26], do not include the meet operation, ∧. The logics for
all action algebras and for the subclass of *-continuous ones are obtained, respectively, from
ACT and ACTω by removing the rules for ∧. We denote the resulting calculi by ACT∼

and ACT∼ω respectively. Due to cut elimination, ACT∼ω is a conservative fragment of ACTω.
Algebraically, if a sequent is true in all *-continuous action lattices and does not include ∧,
then it is true in all *-continuous action algebras. For ACT and ACT∼, this is unknown:
potentially, there could exist a ∧-free formula derivable in ACT (via a detour using cut with
∧-formulae), but not in ACT∼.

Buszkowski [4] proved Π0
1-hardness for ACT∼ω also. The upper Π0

1 bound follows from that
for ACTω [23, 5] and the conservativity result mentioned above. The trick used by Buszkowski
in order to get rid of using ∧ in his Π0

1-hardness proof, is the usage of “pseudo-double-negation.”
Let b be a fresh variable, not used in our encoding. Let αb = b / α; we call αbb = b /(b / α) the
pseudo-double-negation of α. Since αbb∧βbb is equivalent to (αb∨βb)b, this construction allows
us to replace ∧ with ∨, where needed. Below we develop this idea more accurately.

For each symbol a let

ϕ̃a =
(∨
{(A/(B1 · . . . ·B`))

b | A→ aB1 . . . B` is a production rule of GM,x}
)b

and
ψ̃M,x =

∨
a

ϕ̃a.

Now it is sufficient to establish the following two lemmata, in order to use the machinery of
Section 3 and obtain Theorems 1 and 2 in the restricted language without ∧.

Lemma 9. If M trivially cycles on x, then ψ̃+
M,x ` Sbb is derivable in ACT∼.

Lemma 10. If ψ̃+
M,x ` Sbb is derivable in ACT∼ω , then M does not halt on x.

Using these two lemmata, we get, for any L between ACT∼ and ACT∼ω ,

C ⊆ K̃(ACT∼) ⊆ K̃(L) ⊆ K̃(ACT∼ω ) ⊆ H,

8
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where K̃(L) = {〈M, x〉 | ψ̃+
M,x ` Sbb is derivable in L}. This immediately yields analogs of

Theorems 1 and 2 for the systems without ∧:

Theorem 3. If ACT∼ ⊆ L ⊆ ACT∼ω , then L is undecidable. Moreover, if L is recursively
enumerable, it is Σ0

1-complete.

Now let us prove Lemma 9 and Lemma 10.

Proof of Lemma 9. First we notice that if A → aB1 . . . B` is a production rule of GM,x, then
ϕ̃a ` (A/(B1 · . . . · B`))

bb is derivable in ACT∼. In particular, we can derive ϕ̃a ` U bb and
ϕ̃a ` (U /U)bb, which yield ψ̃ ` U bb and ψ̃ ` (U /U)bb. This allows us to derive ψ̃+ ` U bb,
just replacing U with U bb in the derivation from the proof of Lemma 6 and using the fact that
ψ̃ ` (U /U)bb entails ψ̃ ` U bb /U bb, by cut with (U /U)bb ` U bb /U bb.

Next, we use the “long rule” to derive ψ̃+ ` Sbb. The first n premises are handled exactly
as Buszkowski does [4], using the fact that, for a fresh b, ξbb1 , . . . , ξ

bb
n ` ζbb is equiderivable

in MALC with ξ1, . . . , ξn ` ζ [10, Lemma 2]. For the last premise, the interesting case is
a1 = # (see proof of Lemma 6), in which the necessary (S /(Y · U))bb, ϕ̃a2

, . . . , ϕ̃an
, U bb ` Sbb

is obtained, by cut, from (S /(Y · U))bb, Y bb, U bb ` Sbb.

Proof of Lemma 10. This is essentially due to Buszkowski [4]; see also [10, Lemma 12].

4.2 The Multiplicative Lambek Calculus with Iteration

In this section we go further and consider the system without both ∨ and ∧, i.e., the purely
multiplicative Lambek calculus extended with iteration. In this setting, we consider only the
infinitary calculus, denoted by L∗ω, and prove its Π0

1-completeness. Complexity of the corre-
sponding systems with fixpoint definitions of iteration is left as an open problem (we again
conjecture Σ0

1-completeness).
Notice that for Kleene algebras their equational theory can be interpreted in its fragment

without ∨, by distributing ∨ out (for Kleene star, use (a ∨ b)∗ = a∗(b∗a)∗) and applying the
disjunctive property. For the residuated case, this would not work (for example, one cannot
distribute ∨ out of (a ∨ b) / c), thus complexity for the purely multiplicative case is a separate
issue.

The key idea which allows the removal of both ∨ and ∧ simultaneously is based on the
following theorem:

Theorem 4. For any context-free language without the empty word there exists, and can
be effectively computed, a Lambek grammar with unique type assignments. Namely, if
Σ = {a1, . . . , an} is the terminal alphabet, then there exist formulae α1, . . . , αn, β such that
α1, . . . , αn ` β is derivable in the Lambek calculus iff a1 . . . an belongs to the language.

An analog of this theorem was proved by Safiullin [28] (see also [16, Appendix]), but for the
variant of the Lambek calculus where left-hand sides of sequents are required to be non-empty.
For the version without this restriction, used in this paper, Safiullin’s construction has to be
modified [18].

Using this theorem, we encode the following 2-alternation problem for context-free gram-
mars: a grammar over alphabet Σ = {a1, a2} is 2-alternating, if it generates all the words
starting with a1 and ending with a2. It is easy to show that this problem is also Π0

1-hard. Now
let ξ = (α+

1 · α
+
2 )+, where α1 and α2, along with β, are obtained from the grammar by Theo-

rem 4. The grammar is 2-alternating, if and only if ξ ` β is derivable in L∗ω. Thus, we obtain
Π0

1-hardness of this system; the upper bound follows from the upper bound for ACTω [23, 5]
by conservativity.

9
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Theorem 5. L∗ω is Π0
1-complete.
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