
Focussing, MALL and the polynomial hierarchy

Anupam Das

University of Copenhagen

February 20, 2018

Abstract. We investigate how to extract alternating time bounds from
‘focussed’ proofs, treating non-invertible rule phases as nondeterministic
computation and invertible rule phases as co-nondeterministic compu-
tation. We refine the usual presentation of focussing to account for de-
terministic computations in proof search, which correspond to invertible
rules that do not branch, more faithfully associating phases of focussed
proof search to their alternating time complexity.

As our main result, we give a focussed system for affine MALL (i.e.
with weakening) and give encodings to and from true quantified Boolean
formulas (QBFs): in one direction we encode QBF satisfiability and in
the other we encode focussed proof search. Moreover we show that the
composition of the two encodings preserves quantifier alternation, hence
yielding natural fragments of affine MALL complete for each level of the
polynomial hierarchy. This refines the well-known result that affine MALL
is PSPACE-complete.

1 Introduction and motivation

Proof systems are often a source of optimal decision algorithms for logics, theo-
retically speaking. We now know how to extract various bounds for proof search
as a function of certain properties of the proof system at hand. For instance we
may compute:

– nondeterministic time bounds via proof complexity, e.g. [6,11,5];
– (non)deterministic space bounds via the depth of proofs or search spaces,

and loop-checking, e.g. [2,10,21];
– deterministic or co-nondeterministic time bounds via systems of invertible

rules, see e.g. [25,19].

However, despite considerable progress in the field, there still remains a gap
between the obtention of (co-)nondeterministic time bounds, such as NP or
coNP, and space bounds such as PSPACE (equivalently, alternating poly-
nomial time, cf. [3]). Phrased differently, while we have many logics we know
to be PSPACE-complete (intuitionistic logic, various modal logics, etc.), we
have very little understanding of their fragments corresponding to subclasses of
PSPACE. In particular, in this work we are interested in the levels of the poly-
nomial hierarchy (PH) [24], which correspond to alternating polynomial-time
Turing machines with boundedly many alternations.

One relevant development in structural proof theory in the last 20-30 years
has been the notion of focussing, e.g. [1,12,14]. Focussed systems elegantly de-
lineate the phases of invertible and non-invertible inferences in proofs, allowing
the natural obtention of alternating time bounds for a logic. Furthermore, they
significantly constrain the number of local choices available, resulting in reduced
nondeterminism during proof search, while remaining complete (the ‘focussing
theorem’). Such systems thus serve as a natural starting point for identifying
fragments of PSPACE-complete logics complete for levels of PH.

In this work we will consider the case of multiplicative additive linear logic
(MALL) [9], often seen as the prototypical system for PSPACE since its proof
rules constitute the abstract templates of terminating proof search. (Indeed,
MALL is well-known to be PSPACE-complete [15,16].) By considering a fo-
cussed presentation of the affine variant MALLw, which admits weakening, we
analyse proof search to identify classes of theorems belonging to each level of
PH.1 To demonstrate the accuracy of this method, we also show that these
classes are, in fact, complete for their respective levels, via encodings from true
quantified Boolean formulas (QBFs) of appropriate quantifier complexity, cf. [3].

One shortfall of focussed systems is that, in their usual form, they unfor-
tunately do not make adequate consideration for deterministic computations,
which correspond to invertible rules that do not branch, and so the natural
measure of complexity there (‘decide depth’) can considerably overestimate the
alternating complexity of a theorem. In the worst case this can lead to rather
degenerate bounds, exemplified in [7] where an encoding of SAT in intuitionistic
logic requires a linear decide depth, despite being NP-complete.2 In this work
we keep the same abstract notion of focussing, but split the usual invertible, or
‘asynchronous’, phase into a ‘deterministic’ phase, with non-branching invertible
rules, and a ‘co-nondeterministic’ phase, with branching invertible rules. In this
way, when expressing proof search as an alternating predicate, a ∀ quantifier
needs only be introduced in a co-nondeterministic phase. It turns out that this
adaptation suffices to obtain the tight bounds we are after.

This paper is structured as follows. In Sect. 2 we present preliminaries on
QBFs and alternating time complexity, and in Sect. 3 we present preliminar-
ies on MALL and focussing. In Sect. 4 we present an encoding of true QBFs
into MALLw, tracking the association between quantifier complexity and ‘decide
depth’ in focussed proof search. In Sect. 5 we briefly explain how provability
predicates for focussed systems may be obtained as QBFs, with quantifier com-
plexity calibrated appropriately with decide depth (the ‘focussing hierarchy’). In
Sect. 6 we show how this depth measure can be feasibly approximated to yield a
bona fide encoding of MALLw back into true QBFs. Furthermore, we show that
the composition of the two encodings preserves quantifier complexity, and yields
fragments of MALLw complete for each level of the polynomial hierarchy. Finally,
in Sect. 7 we give some concluding remarks regarding the case of (non-affine)
MALL, and further perspectives on our presentation of focussing.

1 MALLw is also PSPACE-complete, a folklore result subsumed by this work.
2 In fact the same phenomenon presents in this work, cf. Fig. 3.

2

2 Preliminaries on logic and computational complexity

We will recall some basic theory of Boolean logic, and its connections to alternat-
ing time complexity. Throughout this paper we omit constants (or ‘units’), both
for classical and linear logic, to simplify exposition and avoid clashing notations.

2.1 Second-order Boolean logic

Quantified Boolean formulas (QBFs) are obtained from the language of classical
propositional logic by adding (second-order) quantifiers varying over proposi-
tions. Formally, let us fix some set Var of propositional variables, written x, y
etc. QBFs, written ϕ,ψ etc., are generated as follows:

ϕ ::= x | x | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∀x.ϕ

The formula x stands for the negation of x, and all formulas we deal with will
be in De Morgan normal form, i.e. with negation restricted to variables as in
the grammar above. Nonetheless, we may sometimes write ϕ to denote the De
Morgan dual of ϕ, generated by the following identities:

ϕ := ϕ
(ϕ ∨ ψ) := ϕ ∧ ψ
(ϕ ∧ ψ) := ϕ ∨ ψ

∃x.ϕ := ∀x.ϕ
∀x.ϕ := ∃x.ϕ

A formula is closed if all its variables are bound by a quantifier (∃ or ∀). We
write |ϕ| for the number of literal occurrences in ϕ.

An assignment is a subset α ⊆ Var. We define the satisfaction relation be-
tween an assignment α and a formula ϕ, written α � ϕ, in the usual way:

– α � x if x ∈ α.
– α � x if x /∈ α.

– α � ϕ ∨ ψ if α � ϕ or α � ψ.
– α � ϕ ∧ ψ if α � ϕ and α � ψ.

– α � ∃x.ϕ if α \ {x} � ϕ or α ∪ {x} � ϕ.
– α � ∀x.ϕ if α \ {x} � ϕ and α ∪ {x} � ϕ.

Definition 1 (Quantified Boolean logic). A QBF ϕ is satisfiable if there
is some assignment α ⊆ Var such that α � ϕ. It is valid if α � ϕ for every
assignment α ⊆ Var. If ϕ is closed, then we may simply say that it is true,
written � ϕ, when it is satisfiable and/or valid.3

Second-order classical propositional logic (CPL2) is the set of true QBFs.

In practice, when dealing with a given formula ϕ, we will only need to consider
assignments α that contain variables occurring in ϕ. We will assume this later
when we discuss predicates (or ‘languages’) computed by open QBFs.

3 Notice that, by definition of satisfaction these two notions coincide for closed QBFs.

3

We point out that, from the logical point of view, it suffices to work with only
closed QBFs, with satisfiability recovered by prenexing ∃ quantifiers and validity
recovered by prenexing ∀ quantifiers; in the presence of units/constants, the
definition of ‘truth’ above could be adapted with no reference to α. However we
will also make use of open formulas in this work to describe languages/predicates,
so it will be useful to have the notion of satisfaction available.

Definition 2 (QBF hierarchy). For k ≥ 0 we define the following classes:

– Σq
0 = Πq

0 is the set of quantifier-free QBFs.
– Σq

k+1 ⊇ Π
q
k and, if ϕ ∈ Σq

k+1, then so is ∃x.ϕ.
– Πq

k+1 ⊇ Σq
n and, if ϕ ∈ Πq

k+1, then so is ∀x.ϕ.

Notice that we have only defined the classes above for ‘prenexed’ QBFs, i.e. with
all quantifiers at the front. It is well known that any QBF is equivalent to such
a formula. For this reason we will systematically assume that all QBFs we deal
with are in prenex form. Notice that ϕ ∈ Σq

k if and only if ϕ ∈ Πq
k , by the

definition of De Morgan duality.
In this work we will not need to formally deal with any deduction system

for CPL2, although we point out that there is a simple system, semantic trees,
whose proof search dynamics closely match quantifier complexity [13].

2.2 Alternating time complexity

In computation we are used to the distinction between deterministic and non-
deterministic computation. Intuitively, co-nondeterminism is just the ‘dual’ of
nondeterminism: at the machine level it is captured by ‘nondeterministic’ Tur-
ing machines where every run is accepting, not just some run as in the case of
usual nondeterminism. From here alternating Turing machines generalise both
the nondeterministic and co-nondeterministic models by allowing both univer-
sally branching states and existentially branching states.

Intuitions aside, we will introduce the concepts we need here assuming only
a familiarity with deterministic and nondeterministic Turing machines and their
complexity measures, to limit the formal prerequisites. Our exposition is infor-
mal, but the reader may find comprehensive details in, e.g., [22].

For a language L, we write NP(L) to mean the class of languages accepted
in polynomial time by some nondeterministic Turing machine which may, at any
point, query in constant time whether some word is in L or not. We extend this
to classes of languages C, writing NP(C) for

⋃
L∈C

NP(L). We also write coC for

the class of languages whose complements are in C.

Definition 3 (Polynomial hierarchy, [24]). We define the following classes:

– Σp
0 = Πp

0 := P.
– Σp

k+1 := NP(Σp
k).

– Πp
k+1 := coΣp

k+1.

4

The polynomial hierarchy (PH) is
⋃
k≥0

Σp
k =

⋃
k≥0

Πp
k .

We may more naturally view the polynomial hierarchy as the bounded-
quantifier-alternation fragments of QBFs we introduced earlier. For this we con-
strue Σq

k and Πq
k as classes of finite languages, by associating with a QBF ϕ(~x)

the class of (finite) assignments α ⊆ ~x satisfying it. (Assignments themselves
may be seen as binary strings of length |~x| which encode their characteristic
functions.) Σq

k-satisfaction (Πq
k-satisfaction) is the problem of deciding, given a

Σq
k (resp. Πq

k) formula ϕ(~x) and an assignment α ⊆ ~x, whether α � ϕ(~x).

Theorem 4 (cf. [3]). For k ≥ 1, the Σq
k-satisfaction (Πq

k-satisfaction) is Σp
k-

complete (resp. Πp
k -complete).

Corollary 5 (of Thm. 4). For k ≥ 1, the class of true closed Σq
k QBFs is

Σp
k-complete, and the class of true closed Πq

k QBFs is Πp
k -complete.

3 Linear logic and proof search

In this section we introduce multiplicative additive linear logic (MALL) and its
proof theory [9], in particular a certain focussed proof system for it, cf. [1,8,4].

3.1 Multiplicative additive linear logic

For convenience, we will work with the same set Var of variables that we used for
QBFs and, as for classical logic, we will omit constants/units for simplicity. To
distinguish them from QBFs, we will use the metavariables A,B, etc. for MALL
formulas, generated as follows:

A ::= x | x | AOB | A�B | A�B | ANB

O,� are called multiplicative connectives, and �,N are called additive connec-
tives. Like for QBFs, we have restricted negation to the variables, thanks to De
Morgan duality in MALL. Again we may write A for the De Morgan dual of A,
which is generated similarly to the case of QBFs:

A := A
(AOB) := A�B

(A�B) := AOB

(A�B) := ANB

(ANB) := A�B

Due to De Morgan duality, we will work only with ‘one-sided’ calculi for
MALL, where all formulas occur to the right of the sequent arrow. This means
we will have fewer cases to consider for formal proofs, although we will also
informally adopt a two-sided notation when it is convenient.

Definition 6 (Proof system). A cedent, written Γ,∆ etc., is just a multiset
of formulas; as usual we use the comma, ‘,’, for multiset union. The system (cut-
free) MALL is given in Fig. 1. The system MALLw, also called affine MALL, is
defined in the same way, only with the id rule replaced by:

wid
` Γ, x, x

(1)

5

id
` x, x

` Γ,A,B
O
` Γ,AOB

` Γ,A ` ∆,B
�
` Γ,∆,A�B

Γ,Ai
� i ∈ {0, 1}
Γ,A0 �A1

` Γ,A ` Γ,B
N
` Γ,ANB

Fig. 1. The system (cut-free) MALL.

Notice that, following the tradition in linear logic, we write ‘`’ for the sequent
arrow, though we point out that the deduction theorem does not actually hold
w.r.t. linear implication. For the affine variant, we have simply built weakening
into the identity step, since it may always be permuted upwards in a proof:

Proposition 7 (Weakening admissibility). The following rule, called weak-
ening, is (height-preserving) admissible in MALLw:

` Γ
wk
` Γ,A

Notice also that we have not included the ‘cut’ rule, thanks to cut-elimination
for linear logic [9]. It will play no role in this paper.

3.2 (Multi-)focussed systems for proof search

Focussed systems for MALL (and linear logic in general) have been widely studied
[1,12,8,4]. The idea is to associate polarities to the connectives based on whether
their rule is invertible (negative) or their dual’s rule is invertible (positive). Now
bottom-up proof search can be organised in a manner where, once we have chosen
a non-invertible principal formula to decompose (the ‘focus’), we may continue
to decompose its auxiliary formulas until the focus becomes invertible. The main
result herein is the completeness of such proof search strategies, known as the
focussing theorem (a.k.a. the ‘focalisation theorem’).

It is known that ‘multi-focussed’ variants, where one may have many foci,
can lead to ‘canonical’ representations of proofs for MALL [4]. Furthermore, the
alternation behaviour of focussed proof search can be understood via a game
theoretic approach [8]. However, such frameworks unfortunately fall short of
characterising the alternating complexity of proof search in a faithful way. The
issue is that the usual focussing methodology does not make any account for
deterministic computations, which correspond to invertible rules that do not
branch. Such rules are usually treated just like the other invertible rules, and
so morally introduce extraneous quantifiers when encoding proof search as an
alternating time predicate.

For these reasons we introduce a bespoke presentation of (multi-)focussing for
MALL, with a designated ‘deterministic’ phase allowing invertible non-branching
rules, in this case the O rule. To avoid conflicts with more traditional presenta-
tions, we refer to the other two phases as ‘nondeterministic’ and ‘co-nondeterministic’
rather than ‘synchronous’ and ‘asynchronous’ respectively; at the same time this
reinforces the intended connections to computational complexity.

6

Deterministic phase:

id
` a, a

` Γ,A,B
O
` Γ,AOB

` ~a, ~P ⇓ ~P ′

D ~P ′ 6= ∅
` ~a, ~P , ~P ′

` ~a, ~P ⇑ ~M
D̄ ~M 6= ∅
` ~a, ~P , ~M

Nondeterministic phase:

` Γ ⇓ ∆,Ai
� i ∈ {0, 1}
` Γ ⇓ ∆,A0 �A1

` Γ ⇓ Σ,A ∆ ⇓ Π,B
�
` Γ,∆ ⇓ Σ,Π,A�B

` Γ,~a, ~N
R

` Γ ⇓ ~a, ~N

Co-nondeterministic phase:

` Γ ⇑ ∆,A Γ ⇑ ∆,B
N

` Γ ⇑ ∆,ANB

` Γ, ~P , ~O
R̄

` Γ ⇑ ~P , ~O

Fig. 2. The system FMALL.

In what follows, we use a, b, etc. to vary over literals. We also use the following
metavariables to vary over formulas with the corresponding top-level connectives:

M : ‘negative and not deterministic’ N
N : ‘negative’ N,O
O : ‘deterministic’ �,O, a
P : ‘positive’ �,�
Q : ‘positive and not deterministic’ �

‘Vectors’ are used to vary over multisets of associated formulas, e.g. ~P varies
over multisets of P -formulas. Sequents may now contain the delimiters ⇓ or ⇑.

Definition 8 (Multi-focussed proof system). We define the (multi-focussed)
system FMALL in Fig. 2. The system FMALLw is the same as FMALL but with
the id rule redefined as (1).

Note that the determinism of � plays no role in this one-sided calculus, but
in a two-sided calculus we would have a full symmetry of rules. A proof of a
formula A is simply a proof of the sequent ` A, i.e. there is no need to pre-
decorate with arrows thanks to the deterministic phase. The rules D and D̄ are
called decide and co-decide respectively, while R and R̄ are called release and
co-release respectively. We have not included a ‘store’ rule, for simplicity, but if
we did we would also recover a dual ‘co-store’ rule.

As usual for multi-focussed systems, the analogous focussed system can be
recovered by restricting to only one focussed formula in a nondeterministic phase.
However, in our presentation, we may also impose the dual reststriction, that
there is only one formula in ‘co-focus’ during a co-nondeterministic phase:

Definition 9 (Simply (co-)focussed subsystems). A FMALL proof is fo-

cussed if ~P in D is always singleton. It is co-focussed if ~M in D̄ is always a
singleton. If a proof is both focussed and co-focussed then we say it is bi-focussed.

7

The notion of ‘co-focussing’ is not usually possible for (multi-)focussed systems
since the invariant of being a singleton is not usually maintained in an asyn-
chronous phase, due to the O rule. However we see O as being deterministic
rather than co-nondeterministic, and we can see that the N-rule indeed main-
tains the invariant of having just one formula on the right of ⇑.

Theorem 10 (Focussing theorem). The class of bi-focussed FMALL-proofs
(FMALLw-proofs) is complete for MALL (resp. MALLw).

Evidently, this immediately means that FMALL (FMALLw), as well as its focussed
and co-focussed subsystems, are also complete for MALL (resp. MALLw). The
proof of Thm. 10 follows routinely from any other completeness proof for focussed
MALL, e.g. [1,12] ; our only change is at the level of notation.

To aid our exposition, we will sometimes use a ‘two-sided’ notation and ex-
tra connectives so that the intended semantics of sequents are clearer. Strictly
speaking, this is just a shorthand for one-sided sequents: the calculi defined in
Figs. 1 and 2 are the formal systems we are studying.

Notation 11 We will write Γ ` ∆ as shorthand for the sequent ` Γ ,∆, where
Γ is {A : A ∈ Γ}. We extend this notation to annotated sequents in the natural
way, writing, e.g., Γ ` ∆ ⇑ Σ for ` Γ ,∆,⇑ Σ and Γ ⇓ ∆ ` Σ for ` Γ ,Σ ⇓ ∆.
Notice that, in all cases, (co-)foci are always written to the right of a ⇓ or ⇑.

We write A (B as shorthand for the formula A O B, and A (+ B as
shorthand for the formula A�B. Sometimes we will write, for example, a step,

Γ ` ∆ ⇓ A Γ ′ ⇓ B ` ∆′
(l

Γ, Γ ′ ⇓ A(B ` ∆,∆′

which, by definition, corresponds to a correct application of O in FMALL.

4 An encoding from CPL2 to MALLw

From now on we will work only with MALLw, i.e. affine MALL. In this section we
present an encoding of true QBFs into MALLw. The former were also used for
the original proof that MALL is PSPACE-complete [15,16], though our encoding
differs considerably from theirs and leads to a more refined result, cf. Sect. 6.

4.1 Positive and negative encodings of quantifier-free satisfaction

The base cases of our translation from QBFs to MALLw will be quantifier-
free Boolean satisfaction. This is naturally a deterministic computation, being
polynomial-time computable.4 However one issue is that this determinism cannot
be seen from the point of view of MALLw, since the only deterministic connective
(O, on the right) is not expressive enough to encode satisfaction.

4 In fact, formula evaluation is known to be NC1-complete.

8

Nonetheless we are able to circumvent this problem since MALLw is at least
able to ‘see’ satisfaction as a problem in NP ∩ coNP, via a pair of encodings
corresponding to each class. For non-base levels of PH this is morally the same
as being deterministic. Indeed, the availability of both types of encodings is the
main reason why consider MALLw rather than MALL in this work.

Definition 12 (Positive and negative encodings). For a quantifier-free
Boolean formula ϕ0, we define ϕ−0 (ϕ+

0) as the result of replacing every ∧ in
ϕ0 for N (resp. �) and every ∨ in ϕ0 by O (resp. �).

For an assignment α and list of variables ~x = (x1, . . . , xk), we write α(~x) for
the cedent {xi : xi ∈ α, i ≤ k} ∪ {xi : xi /∈ α, i ≤ k}. We write αn(~x) for the
cedent consisting of n copies of each literal in α(~x).

Proposition 13. Let ϕ0 be a quantifier-free Boolean formula with free variables
~x and let α be an assignment. For n ≥ |ϕ0|, the following are equivalent:

1. α � ϕ0.
2. MALLw proves α(~x) ` ϕ−0 .
3. MALLw proves αn(~x) ` ϕ+

0 .

Proof. 2 =⇒ 1 and 3 =⇒ 1 are immediate from the ‘soundness’ of MALLw with
respect to classical logic, by interpreting � or N as ∧ and � or O as ∨.

1 =⇒ 2 and 1 =⇒ 3 are both proved by induction on |ϕ0|. In the former case,
this follows directly from the invertibility of rules, while in the latter case we
appeal to the properties of satisfaction: for �-formulas we choose an appropriate
disjunct satisfied by α, and for �-formulas we split αn(~x) into αk(~x) and αl(~x)
s.t. k and l bound the size of their respective conjuncts, reducing to the inductive
hypothesis. For both arguments we must appeal to affinity for the base case. ut

4.2 Encoding quantifiers in MALLw

As we said before, we do not follow the ‘locks-and-keys’ approach of [15,16]. In-
stead we follow a similar approach to Statman’s proof that intuitionistic propo-
sitional logic is PSPACE-hard [23], modulo some improvements that are dis-
cussed, for the intuitionistic setting, in [7]. One of the main differences is that
we use ‘Tseitin extension variables’, necessary to avoid an exponential blowup,
only in positive positions, not under negation, and this allows our encodings to
admit similar proofs to the ‘semantic trees’ of the QBF we started with.

Definition 14 (Translation from QBFs to MALLw). Given a QBF ϕ =
Qkxk. · · · .Q1x1.ϕ0 with |ϕ0| = n, we define [ϕ] by induction on k ≥ 1 as follows,

[ϕ0] :=

{
ϕ+ if Q1 is ∃
ϕ− if Q1 is ∀

[Qkxk.ψ] :=

{
([ψ](y)(((xnk (y)� (xnk (y)) if Qk is ∃
([ψ](y)(((xnk (y)� (xnk (y)) if Qk is ∀

where y is always fresh.

9

IH

αn(~x),±xn ` ~y, [ϕ]
Rr

αn(~x),±xn ` ~y ⇓ [ϕ]

id
y ` y

Rl ⇓ y ` y
(l

αn(~x),±xn ⇓ [ϕ](y ` ~y, y
Dl

αn(~x),±xn, [ϕ](y ` ~y, y
(r

αn(~x), [ϕ](y ` ~y,±xn (y
Rr

αn(~x), [ϕ](y ` ~y ⇓ ±xn (y
�r
αn(~x), [ϕ](y ` ~y ⇓ (xn (y) � (xn (y)

Dr

αn(~x), [ϕ](y ` ~y, (xn (y) � (xn (y)
(r

αn(~x) ` ~y, ([ϕ](y)(((xn (y) � (xn (y))
=

αn(~x) ` ~y, [∃x.ϕ]

Fig. 3. Proof of ∃ case for left-right direction of Lemma 15.

Lemma 15. Let ϕ(~x) be a QBF with all free variables displayed and with matrix
ϕ0. Then α � ϕ if and only if MALLw proves αn(~x) ` ~y, [ϕ] for any n ≥ |ϕ0|,
any assignment α and any ~y disjoint from ~x.

Proof (sketch). We proceed by induction on the quantifier complexity of ϕ. For
the base case, when ϕ is quantifier-free, we appeal to Prop. 13; the left-right
direction follows directly by weakening (cf. Prop. 7), while the right-left direction
follows after observing that ~y does not occur in [ϕ] or αn(~x), and so may be
systematically deleted from any proof while preserving correctness.

For the inductive step, in the left-right direction we give appropriate bi-
focussed proofs in Figs. 3 and 4, where ±x in Fig. 3 is chosen to be x if x ∈ α and
x otherwise, the derivations marked IH are obtained by the inductive hypothesis,
and the derivation marked . . . in Fig. 4 is analogous to the one on the left of it.
For the right-left direction, we need only consider the other possibilities that
could occur during bi-focussed proof search, by the focussing theorem, Thm. 10.
For the ∃ case, bottom-up, one could have chosen to first decide on [ϕ] (y
in the antecedent. The consequent (l step would have to send the formula
(xn (y) � (xn (y) to the premiss for y, since otherwise every variable
occurrence in that premiss would be distinct and there would be no way to
correctly finish proof search. Thus, possibly after weakening, we may apply the
inductive hypothesis to the other premiss. A similar analysis of the upper (l

step in Fig. 3 means that any other split will allow us to appeal to the inductive
hypothesis after weakening. For the ∀ case the argument is much simpler, since
no matter which order we ‘co-decide’, we will end up with the same leaves.5

(Note that, for the derivations for the innermost quantifier (∃ or ∀), the topmost
R or R̄ step of Figs. 3 or 4 (resp.) does not occur.) ut
5 This is actually exemplary of the more general phenomenon that invertible phases

of rules are ‘confluent’.

10

IH

αn(~x), xn ` ~y, y, [ϕ]
R̄r

αn(~x), xn ` ~y, y ⇑ [ϕ]

id
αn(~x), xn, y ` ~y, y

R̄l
αn(~x), xn ⇑ y ` ~y, y

(+
l

αn(~x), xn ⇑ [ϕ](+ y ` ~y, y
D̄l

αn(~x), xn, [ϕ](+ y ` ~y, y
(r

αn(~x), [ϕ](+ y ` ~y, xn (y
R̄r

αn(~x), [ϕ](+ y ` ~y ⇑ xn (y

...
R̄r

αn(~x), [ϕ](+ y ` ~y ⇑ xn (y
Nr

αn(~x), [ϕ](+ y ` ~y ⇑ (xn (y) N (xn (y)
D̄r

αn(~x), [ϕ](+ y ` ~y, (xn (y) N (xn (y)
(r

αn(~x) ` ~y, ([ϕ](+ y)(((xn (y) N (xn (y))
=

αn(~x) ` ~y, [∀x.ϕ]

Fig. 4. Proof of ∀ case for left-right direction of Lemma 15.

Theorem 16. Let ϕ be a closed QBF. � ϕ if and only if MALLw proves [ϕ].

Proof. Follows immediately from Lemma 15. ut

5 Focussed proof search as alternating time predicates

In this section we will show how to express focussed proof search as an alternating
polynomial-time predicate that will later allow us to calibrate the complexity of
proof search with levels of the QBF and polynomial hierarchies.

The following definition generalises the notions of ‘decide depth’ and ‘release
depth’ found in other works, e.g. [20].

Definition 17 (Nondeterministic and co-nondeterministic complexity).
For a proof P, its nondeterministic complexity, σ(P), is the least number of al-
ternations between D and D̄ steps in a branch through P, starting with D. Its
co-nondeterministic complexity, π(P), is defined similarly, only starting with D̄.

For a cedent Γ , we write σ(Γ) (π(Γ)) for the least k ∈ N such that there is
a proof P of ` Γ with σ(P) ≤ k (resp. π(P) ≤ k).

Notice that the above notions of complexity are robust under the choice of multi-
focussed, (co-)focussed or bi-focussed proof systems: while the number of D or D̄
steps may increase, the number of alternations remains constant. This robustness
will also apply to the other concepts we introduce in this section.

We will now introduce ‘provability predicates’ that delineate the complexity
of proof search in a similar way to the QBF and polynomial hierarchies we
presented earlier. Recall the notions of deterministic, nondeterministic and co-
nondeterministic rules from Dfn. 8, cf. Fig. 2.

11

Definition 18 (Focussing hierarchy). A cedent Γ is:

– Σf
1 -provable if there is a proof of ` Γ using only deterministic and nonde-

terministic steps.
– Πf

1 -provable if every maximal path from ` Γ , bottom-up, through determin-
istic and co-nondeterministic rules ends at a correct initial sequent.

– Σf
k+1-provable if there is a derivation of ` Γ , using only deterministic and

nondeterministic steps, from sequents ` Γi which are Πf
k -provable.

– Πf
k+1-provable if every maximal path from ` Γ , bottom-up, through deter-

ministic and co-nondeterministic rules ends at a Σf
k -provable sequent.

As expected, we may directly link the (co-)nondeterministic complexity of a
cedent with its position in the ‘focussing hierarchy’:

Proposition 19. A cedent Γ is Σf
k -provable (Πf

k -provable) if and only if σ(Γ) ≤
k (resp. π(Γ) ≤ k).

Moreover, we have a natural correspondence between the focussing hierarchy
and the other hierarchies we have discussed:

Theorem 20. Σf
k -provability (Πf

k -provability) is computable in Σp
k (resp. Πp

k).

Moreover, for k > 0, there are Σq
k (resp. Πq

k) formulas Σf
k -Provn (resp. Πf

k -Provn),

constructible in time polynomial in n ∈ N, that compute the Σf
k -provability

(resp. Πf
k -provability) on all formulas A such that |A| = n.

We omit a proof of this, which is routine, due to space constraints, but direct the
reader to the analogous construction in previous work, [7]. We point out that,
for the � rule, even though there are two premisses, the rule is context-splitting,
and so a nondeterministic machine may simply split into two parallel threads
with no blowup in complexity.

6 An ‘inverse’ encoding from MALLw into CPL2

From Thm. 20, let us henceforth fix appropriate QBFs Σf
k -Provn and Πf

k -Provn
computing Σf

k -provability and Πf
k -provability, resp., for k > 0. Given these

formulas, we will in this section give an explicit encoding from MALLw to CPL2,
i.e. a polynomial-time function from MALLw-formulas to QBFs whose restriction
to theorems has image in CPL2. Moreover, we will show that this encoding acts
as an ‘inverse’ to the one we gave in Sect. 4, and finally identify fragments of
MALLw complete for each level of PH.

To this end, the issue with the complexity functions σ, π introduced earlier
is that they are hard to compute. Instead we give an ‘over-estimate’ here that
will suffice for the encodings we are after.

So that the notions we define below are well defined, we will assume some
arbitrary total order on formulae. The precise choice is unimportant, as long
as it is polynomial-time computable; this way our ultimate encoding remains
computable in polynomial time.

12

dσe(~a) := 0
dσe(Γ,AOB) := dσe(Γ,A,B) A is least in Γ,A

dσe(~a, ~P , P) := dσe(~a, ~P ⇓ P) P is least in ~P , P

dσe(~a, ~P , ~M,M) := 1 + dπe(~a, ~P , ~M,⇑M) M is least in ~M,M

dπe(~a) := 0
dπe(Γ,AOB) := dπe(Γ,A,B) A is least in Γ,A

dπe(~a, ~P , P) := 1 + dσe(~a, ~P ⇓ P) P is least in ~P , P

dπe(~a, ~P , ~M,M) := dπe(~a, ~P , ~M,⇑M) M is least in ~M,M

dσe(Γ ⇓ A�B) :=

{
dσe(Γ,A) dσe(A) ≥ dσe(B)

dσe(Γ,B) otherwise

dσe(Γ ⇓ A�B) :=

{
dσe(Γ,A) dσe(A) ≥ dσe(B)

dσe(Γ,B) otherwise

dσe(Γ ⇓ X) := dσe(Γ,X) X is a or N

dπe(Γ ⇑ ANB) :=

{
dπe(Γ,A) dπe(A) ≥ dπe(B)

dπe(Γ,B) otherwise

dπe(Γ ⇑ X) := dπe(Γ,X) X is O or P

Fig. 5. Approximating (co-)nondeterminstic complexities.

Definition 21 (Approximating the complexity of a sequent). We define
the functions dσe and dπe on sequents in Fig. 5.

It is not hard to see that we have:

Proposition 22 (Over-estimatation). σ ≤ dσe and π ≤ dπe.

Notice that the over-estimation for the � case is particularly extreme: in the
worst case we have that the entire context is copied to one branch. This, along
with the fact that the base case applies to only atomic cedents, means that it
does not actually matter which order we compute an approximation.

Moreover, we have the following:

Proposition 23. dσe and dπe are polynomial-time computable.

Finally, we have that these approximations are in fact tight for the translation
[·] from MALLw-formulas to QBFs (cf. Sect. 4) by an inspection of its definition:

Proposition 24. dσe([ϕ]) = σ([ϕ]) and dπe([ϕ]) = π([ϕ]).

We are now ready to define our ‘inverse’ encoding to [·]:

Definition 25 (Encoding). For a MALLw formula A, we define 〈A〉 as follows:

〈A〉 :=

{
Σf

k -Prov|A|(A) if k = dσe(A) ≤ dπe(A)

Πf
k -Prov|A|(A) if k = dπe(A) < dσe(A)

13

Finally, we are able to present our main result:

Theorem 26. We have the following:

1. [·] is an encoding from CPL2 to MALLw.
2. 〈·〉 is an encoding from MALLw to CPL2.
3. The composition 〈·〉 ◦ [·] : CPL2→ CPL2 preserves quantifier complexity, i.e.

it maps Σq
k (Πq

k) theorems to Σq
k (resp. Πq

k) theorems, for k > 0.

Proof. We have already proved 1 in Thm. 16. 2 follows from the definitions of
Σf

k -Prov and Πf
k -Prov (cf. Thm. 20), under Props. 19 and 22. Finally 3 then

follows by tightness of the approximation in the image of [·], Prop. 24.

Consequently, we may identify polynomial-time recognisable subsets of MALLw-
formulas whose theorems are complete for levels of the polynomial hierarchy:

Corollary 27. We have the following, for k > 0:

1. {A ∈ MALLw : dσe(A) ≤ k} is Σp
k-complete.

2. {A ∈ MALLw : dπe(A) ≤ k} is Πp
k -complete.

7 Conclusions and further remarks

We gave a refined presentation of (multi-)focussed systems for multiplicative-
additive linear logic, and its affine variant, that accounts for deterministic com-
putations in proof search, cf. Sect. 3. We showed that it admits rather controlled
normal forms in the form of bi-focussed proofs, and highlighted a duality between
focussing and ‘co-focussing’ that emerges thanks to this presentation.

The main reason for using focussed systems such as ours was to better reflect
the alternating complexity of bottom-up proof search, cf. Sect. 5. We justified
the accuracy of these bounds by showing that natural measures of proof search
complexity for FMALLw tightly delineate the theorems of MALLw according to
associated levels of the polynomial hierarchy, cf. Sects. 4 and 6. These results ex-
emplify how the capacity of proof search to provide optimal decision procedures
for logics may extend to important subclasses of PSPACE.

It is natural to wonder whether a similar result to Thm. 26 could be obtained
for (non-affine) MALL. The reason we chose MALLw is that it allows for a robust
and uniform approach that highlights the ability of focussed systems to realise
tight alternating time bounds for logics, without too many extraneous techni-
calities. Nonetheless, we briefly discuss how a similar result could be obtained
for MALL, although stop short of giving formal results due to space constraints.

The main issue for MALL is the fact that there does not seem to be any
‘negative’ encoding of quantifier-free satisfaction, apparently only allowing char-
acterisations of the levels Σp

2k+1 and Πp
2k in the same way. Apart from this, the

rest of the argument can be recovered for MALL with some local adaptations.
One may redefine [∀x.ϕ] as (x�x)([ϕ], in order to avoid the need for weaken-
ing, and the associated coding of assignments also needs to be more structured,

14

combining � and N to reflect the precise choices made in proof search. The proof
of the corresponding form of Lemma 15 requires a more global analysis, for the
right-left direction, due to the absence of weakening. For the inverse encoding,
the definition of 〈·〉 remains the same, and our main inversion result, Thm. 26,
goes through as before.

In fact, by enriching the proof system with a deterministic ‘evaluation’ rule
for positive encodings of quantifier-free satisfaction, we may recover fragments
of MALL complete for each level of PH. A similar approach was followed for
fragments of intuitionistic logic in [7], although this leads to further technicalities
when approximating (co-)nondeterministic complexity of a sequent.

Our presentation of FMALL should extend to logics with units/constants,
quantifiers and exponentials, following traditional approaches to focussed linear
logic, cf. [1,12]. It would be interesting to see what could be said about the
complexity of proof search for such logics. For instance, the usual ∀ rule becomes
deterministic in our analysis, since it does not branch:

Γ,A(y)
∀ y is fresh
Γ,∀x.A(x)

As a result, the alternating complexity of proof search is not affected by the
∀-rule, but rather interactions between positive connectives, including ∃, and
negative connectives such as N. Interpreting this over a classical setting could
give us new ways to delineate true QBFs according to the polynomial hierarchy,
determined by the alternation of ∃ and propositional connectives rather than ∀.

Much of the literature on logical frameworks via focussed systems is based
around the idea that an inference rule may be simulated by a ‘bipole’, i.e. a
single alternation between an invertible and non-invertible phase of inference
steps. However, accounting for determinism might yield more refined simula-
tions, where non-invertible rules are simulated by phases of deterministic and
nondeterministic rules, but not co-nondeterministic ones, cf. Dfn. 18. In partic-
ular we envisage this to be possible for certain translations between modal logic
and first-order logic, cf. [18,17].

Acknowledgements. I would like to thank Taus Brock-Nannestad, Kaustuv
Chaudhuri, Sonia Marin and Dale Miller for many fruitful discussions about
focussing, and in particular, on the presentation of it herein.

References

1. J. Andreoli. Logic programming with focusing proofs in linear logic. J. Log.
Comput., 2(3):297–347, 1992.

2. S. R. Buss and R. Iemhoff. The depth of intuitionistic cut free proofs, 2003.

3. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, Jan. 1981.

15

4. K. Chaudhuri, D. Miller, and A. Saurin. Canonical sequent proofs via multi-
focusing. In Fifth IFIP International Conference On Theoretical Computer Science
- TCS 2008, IFIP 20th World Computer Congress, TC 1, Foundations of Computer
Science, September 7-10, 2008, Milano, Italy, pages 383–396, 2008.

5. S. Cook and P. Nguyen. Logical Foundations of Proof Complexity. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

6. S. A. Cook and R. A. Reckhow. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic, 44(1):36–50, 1979.

7. A. Das. Alternating time bounds from variants of focussed proof systems, 2017.
Preprint. http://anupamdas.com/alt-time-bnds-var-foc-sys.pdf.

8. O. Delande, D. Miller, and A. Saurin. Proof and refutation in MALL as a game.
Ann. Pure Appl. Logic, 161(5):654–672, 2010.

9. J. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
10. A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward

proof search in some non-classical propositional logics. In International Workshop
on Theorem Proving with Analytic Tableaux and Related Methods, pages 210–225.
Springer, 1996.

11. J. Kraj́ıček. Bounded arithmetic, propositional logic, and complexity theory. Cam-
bridge University Press, New York, NY, USA, 1995.

12. O. Laurent. A study of polarization in logic. Theses, Université de la Méditerranée
- Aix-Marseille II, Mar. 2002.

13. R. Letz. Lemma and model caching in decision procedures for quantified boolean
formulas. In Automated Reasoning with Analytic Tableaux and Related Methods,
International Conference, TABLEAUX 2002, Copenhagen, Denmark, July 30 -
August 1, 2002, Proceedings, pages 160–175, 2002.

14. C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

15. P. Lincoln, J. C. Mitchell, A. Scedrov, and N. Shankar. Decision problems for
propositional linear logic. In 31st Annual Symposium on Foundations of Computer
Science, Volume II, pages 662–671, 1990.

16. P. Lincoln, J. C. Mitchell, A. Scedrov, and N. Shankar. Decision problems for
propositional linear logic. Ann. Pure Appl. Logic, 56(1-3):239–311, 1992.

17. S. Marin, D. Miller, and M. Volpe. A focused framework for emulating modal proof
systems. In 11th Conference on “Advances in Modal Logic,”, pages 469–488, 2016.

18. D. Miller and M. Volpe. Focused labeled proof systems for modal logic. In Logic
for Programming, Artificial Intelligence, and Reasoning - 20th International Con-
ference, LPAR-20, pages 266–280, 2015.

19. S. Negri, J. Von Plato, and A. Ranta. Structural proof theory. Cambridge University
Press, 2008.

20. V. Nigam. Investigating the use of lemmas. 2007. Preprint.
21. H. Ono. Proof-Theoretic Methods in Nonclassical Logic –an Introduction, volume 2

of MSJ Memoirs, pages 207–254. The Mathematical Society of Japan, Tokyo,
Japan, 1998.

22. C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
23. R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theor.

Comput. Sci., 9:67–72, 1979.
24. L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22,

1976.
25. A. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

16

http://anupamdas.com/alt-time-bnds-var-foc-sys.pdf

	Focussing, MALL and the polynomial hierarchy
	Introduction and motivation
	Preliminaries on logic and computational complexity
	Second-order Boolean logic
	Alternating time complexity

	Linear logic and proof search
	Multiplicative additive linear logic
	(Multi-)focussed systems for proof search

	An encoding from CPL2 to MALLw
	Positive and negative encodings of quantifier-free satisfaction
	Encoding quantifiers in MALLw

	Focussed proof search as alternating time predicates
	An `inverse' encoding from MALLw into CPL2
	Conclusions and further remarks

