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If something exists, can we find it?

Suppose that we are working in some first-order theory S, and we have a proof

` ∃x.A(x)

We have established that there exists some object satisfying A. But can we actually

exhibit one?

In other words, we want to find a term t in our language such that

` A(t)

We call t a witness or a realizer for ∃x.A(x).

The search for witnesses for existential statements is theme which lies at the heart
of proof theory.
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∃x.A(x) vs. A(t)

It may seem at first glance that a concrete witness should always exist, and that it
should be easy to find it. Let’s first think about this informally.

Example
There exists a person who is at least as old as all other people on Earth.

For simplicity let’s round this to the nearest year.

• There is a person P0 who is 100 years old.
• Either they are at least as old as all other people, or there is a person P1 who is

101 years old.
• Either they are at least as old as all other people, or there is a person P2 who is

102 years old.

...

This process will certainly stop for some i < 200.

But how do we actually find our oldest person?
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It gets harder! Each of the following existential statements are certainly true:

• In exactly 10 years time, there will be a person who is at least as old as all other
people on Earth.

• There once lived a person who was at least as old as all other people who ever
lived.

• There will be a person who will be at least as old as all other people who have or
will ever live.

Moreover, each of them are proven using very simple reasoning - and taking as an
axiom some reasonable upper bound on the age of humans!

Key point. Existential statements are very strong! It can be very difficult to find an
actual witness.

Can we make this idea more formal?
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Which reasoning principle is the culprit?

The difficulty in producing witnesses for existential statements is primarily due to
the negation axiom:

¬¬A→ A

which is equivalent to the statement

¬A ∨ A

This is known as the law of excluded-middle. It is problematic because we can’t
always decide which of A or¬A holds.

A typical use of excluded-middle in the proof of an existential statement would be

• If A then P(t1),
• If¬A then P(t2),
• Therefore since¬A ∨ A then ∃x.P(x).

But we don’t know which of t1 or t2 works!
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Rational powers

Theorem
There exists a pair of irrational numbers x, y such that xy is rational.

Proof.
Suppose that

√
2
√

2 is rational. Then we can just set x = y =
√

2.

Otherwise,
√

2
√

2 must be irrational, and we can set x =
√

2
√

2 and y =
√

2, since(√
2
√

2
)√

2

=
√

2
2

= 2.

Done.

While the above proof gives us two candidates for x and y, namely

(x, y) = (
√

2,
√

2) or (
√

2
√

2
,
√

2)

we don’t know which one works, since we have no procedure for deciding whether

or not
√

2
√

2 is irrational.

Remark. Actually, it is known that
√

2
√

2 is irrational, but this is a deep result in its
own right.
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A constructive proof: the infinitude of primes

Proposition
There are infinitely many prime numbers.

Fundamental theoremof arithmetic: every number has a prime factorisation.

Proof (Aristotle, Euclid).
Suppose there are only finitely many primes and label them p1, . . . , pk. Apply the
fundamental theorem to p1 · · · · · pk + 1 to find a prime factor. This cannot be any of
the pi.

What constructive information can we extract from this proof?

• The fundamental theorem of arithmetic gives us a factoring algorithm.
• Given primes p1, . . . , pk, we simply factor p1 · · · pk + 1 to find a new prime.

In other words, the proof comes equipped with an algorithm for finding the next
prime.

We also derive a bound: for any number n there is a prime p with n < p ≤ n! + 1.
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Peano Arithmetic, in sequent style

Recall that Peano Arithmetic (PA) is a FO theory over the language {0, s,+,×}.

We give a sequent-style system for it by adding to LK the following initial sequents,

• 0 = s(a) `
• s(a) = s(b) ` a = b
• ` a + 0 = a
• ` a + s(b) = s(a + b)

• ` a× 0 = 0
• ` a× s(b) = (a× b) + a

and, for each formula A, a corresponding induction rule:

Γ ` ∆, A(0) Γ, A(a) ` ∆, A(sa)
ind (a /∈ FV(Γ,∆, A))

Γ ` ∆, A(t)
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Existential proofs and a normal form

Convention: all formulae are over {¬,∨,∧} in De Morgan Normal form (i.e.
negation only on atoms). We also close all rules by De Morgan duality, so that there
is no changing of sides in a proof.

Definition
We call a formula existential if is of the form ∃~x.A where A is quantifier-free. The
theory IΣ′

1 is PA with induction restricted to existential formulae.

NB: this is non-standard terminology, bespoke to this lecture!

The MRDP theorem (aka Hilbert’s 10thproblem, Matiyasevich ’70)
Existential formulae are complete for semi-recursive predicates: they can encode the halting
problem.

NB: The MRDP theorem might be overkill here!

Proposition (‘Free-cut’ elimination)
Any IΣ′

1-provable sequent of only existential formulae can be proved using only existential
formulae.
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Existential formulae are complete for semi-recursive predicates: they can encode the halting
problem.

NB: The MRDP theorem might be overkill here!

Proposition (‘Free-cut’ elimination)
Any IΣ′

1-provable sequent of only existential formulae can be proved using only existential
formulae.
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Existential proofs and primitive recursion

Recall the primitive recursive functions that Michael showed:

Definition
The primitive recursive functions is the smallest class of functions containing
0, s,+,×, projections and closed under composition and primitive recursion: if g, h
are primitive recursive then so is f defined as follows:

f (0,~x) = g(~x)
f (sx,~x) = h(x,~x, f (x,~x))

The main result we will show is:

Theorem (Parsons ’72)
If IΣ′

1 ` ∀~x.∃!y.A(x, y), where A is quantifier-free, then A(~x, y) is the graph of a primitive
recursive function.

NB: Parsons actually proved this for a slightly stronger theory, IΣ1, which gives a
converse result too.

Motto: induction on semi-recursive predicates captures precisely primitive recursion.

(Dirk will say much more about this kind of stuff next week!)
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Some bootstrapping

The following functions are primitive recursive:

Conditional

The function:

cond(x, y, z) :=

{
y x = 0
z otherwise

NB: think of this as a if− then− else construction.

Characteristic functions of quantifier-free formulae

For each quantifier-free formula A(~a) (with all free variables displayed), the
function:

fA(~x) :=

{
1 N � A(~x)

0 otherwise

Exercise: Prove that these functions are primitive recursive for yourself.
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Proof idea

Remark: Notice that, if IΣ′
1 ` ∀~x.∃y.A(~x, y) then there is an existential proof of

∃y.A(~a, y), by invertibility of ∀-r and the free-cut free normal form theorem.

We will show that, for any provable existential sequent,

∃x1.A1, . . . , ∃xm.Am ` ∃y1.B1, . . . , ∃yn.Bn

with free variables~a :
• for j ≤ n, there are primitive recursive functions fj(~a,~x); such that,

• if for all i ≤ m, N � Ai[bi/xi], there is j ≤ n such that N � Bj[fj(~a,~b)/y].

How should we prove this? Let us proceed by structural induction. . .
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Existential cases

Let us look at some of the ways a proof might end:

(Throughout, we assume |Γ| = m and |∆| = n)

Γ, A[a/x] ` ∆
∃-l

Γ, ∃x.A ` ∆

Define fj(~a,~x, x) := f ′j (x,~a,~x).

Γ ` ∆,∃y.B[t/x]
∃-r

Γ ` ∆, ∃x, y.B

Define fn+1(~a,~x) := t.

What about the universal quantifier or negation cases, which could be
non-constructive? There are none by our normal form!
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Structural rules and induction

Γ, ∃x.A, ∃x.A ` ∆
c-l

Γ, ∃x.A ` ∆

Define fj(~a,~x, x) := f ′j (~a,~x, x, x).

Γ ` ∆, ∃x.B, ∃x.B
c-r

Γ ` ∆, ∃x.B

Then define:

fn+1(~a,~x) :=

{
f ′n+1(~a,~x) N � A[f ′n+1(~a,~x)/x]

f ′n+2(~a,~x) otherwise
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The induction case

The most interesting case is induction:

Γ ` ∆, ∃x.A(0) Γ,∃x.A(a) ` ∆, ∃x.A(sa)
ind

Γ ` ∆, ∃x.A(t)

Unsurprisingly, this is where primitive recursion shows up. Let g and h be functions
obtained from the left and right subproofs, by inductive hypothesis.

We can define an auxiliary function by primitive recursion as follows:

f ′(0,~a,~x) = g(~x,~a)
f ′(sa,~a,~x) = h(f (a,~a,~x),~a,~x)

Now we may simply set f (~a,~x) := f ′(t,~a,~x).
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Outline

1 What does it mean to exist?

2 A less basic witnessing theorem

3 ‘Intuitionistic’ reasoning

4 From semantics to syntax: the scalability of Gentzen

5 From richer semantics to a newer proof theory

6 Personal perspectives: a revolution in proof theory

7 References
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A problem with pure reasoning

We are in a strange situation: Perfectly valid reasoning allows us to conclude

∃x, y /∈ Q. xy ∈ Q

but we cannot explicitly witness this...

so do such x, y really exist?

The question of what it means for an object to exist, or for a statement to be true,
created a famous divide in the logical community, and led to the development of
intuitionism.
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Formalism vs Intuitionism

Formalism (led by D. Hilbert, see [Weir, 2015])

• Based on syntax.
• Mathematics is a game of symbols: something ‘exists’ if it

can be derived from mathematical axioms by logical
inference rules.

• In particular, if we can show the nonexistence of an object
is false, then the object must exist.

Intuitionism (led by L. E. J. Brouwer, see [Iemhoff, 2016])

• Based on semantics.
• Mathematics is a mental construction: Something exists

only if it can be exhibited.
• In particular, if we can show the nonexistence of an object

is false, that doesn’t necessarily mean that the object
exists!
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Combining intuitionism with formalism

So far in this course we have broadly taken the formalist approach. However, we can
adapt our deductive systems so that they aligns with the principle of intuitionism.
As we already mentioned, the problem lies with the negation axiom, so why not just
remove it?

Definition (A Hilbert-Frege system for intuitionistic first-order logic)
Take the system we defined in Lecture 1, but replace the axiom schema

¬¬A→ A

with the axiom ex falso quodlibet:

⊥ → A

We write Γ `i A is A is derivable from Γ intuitionistically.

We have Γ `i A⇒ Γ ` A, but not conversely. For example,

0i A ∨ ¬A

0i ¬(A ∧ B)↔ ¬A ∨ ¬B

0i ∃x(P(x)→ ∀y.P(y))
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An intuitionistic sequent calculus

The formulation of intuitionistic logic in the sequent calculus turns out to be
incredibly simple, which highlights once again the elegance of this system.

Theorem (Gentzen, ’34)
Let LJ denote the restriction of the system LK in which we are only allowed to have one
formula on the right, i.e. only contains sequents of the form Γ ` A. Then LJ is sound and
complete for intuitionistic logic.

This is a quite remarkable result: a fundamentally semantic and philosophical
notion is reflected by a purely syntactic criterion.

We also get cut-elimination for free:

Observation
Cut-elimination for LK applied to LJ proofs yields cut-free LJ proofs.

Corollary
Intuitionistic propositional logic is decidable.
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Fundamentally classical proofs

Observe how the single-formula-on-the-right condition is broken by LK proofs of
fundamentally classical theorems:

id
A ` A

w-r
A ` A,⊥

→-r
` A, A→ ⊥

⊥-l
⊥ `

w
⊥ ` A

→-l
(A→ ⊥)→ ⊥ ` A

→-r
` ((A→ ⊥)→ ⊥)→ A

id
A ` A

w-r
A ` A, B

→-r
` A, A→ B

id
A ` A

→-l
(A→ B)→ A ` A

→-r
` ((A→ B)→ A)→ A
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Intuitionistic logic, while being more restrictive than classical logic, enjoys two
important properties:

Theorem (Disjunction property)
If `i A ∨ B then either `i A or `i B.

Theorem (Existence property)
If `i ∃x.A(x) where A(x) has only x free, then there is a closed term t such that `i A(t).

The existence property demonstrates that for intuitionistic logic, an object exists if
and only if it can be constructed!
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Adapting LK

Recall something Tom said about proofs for intuitionistic logic:

Observation
Restricting LK to have only one formula on the right results in a calculus sound and complete
for intuitionistic logic.

This may be reformulated as:

“LJ does not allow structural rules on the right (i.e. w-r, c-r)”

Remarkably, similar structural constraints suffice to elegantly capture other
important logics in the wild.

Let us consider a few case studies that you might have heard of. . .
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Relevan(t+ce) logic

Remember theorems like Pierce’s law or the Drinker’s paradox:

((A→ B)→ A)→ A
∃x.(D(x)→ ∀y.D(y))

These were counterintuitive since their implications did not reflect any causality
from premiss to conclusion. They were material.

Relevant logic (or Relevance logic) arose in the early 20th century. It is an attempt to
remedy this by rejecting the law of ex falso quod libet.

Initially proposed in a Hilbert-Frege setting, relevant logic lacked a rigorous
proof-theoretic treatment. However, in the sequent calculus, we again have a
remarkably simple characterisation:

Theorem (folklore)

• LK, without w rules, is sound and complete for basic relevant logic.
• Cut-elimination still holds.

For a concise introduction, consult:
• [Mares, 2014]

27 / 42



Relevan(t+ce) logic

Remember theorems like Pierce’s law or the Drinker’s paradox:

((A→ B)→ A)→ A
∃x.(D(x)→ ∀y.D(y))

These were counterintuitive since their implications did not reflect any causality
from premiss to conclusion. They were material.

Relevant logic (or Relevance logic) arose in the early 20th century. It is an attempt to
remedy this by rejecting the law of ex falso quod libet.

Initially proposed in a Hilbert-Frege setting, relevant logic lacked a rigorous
proof-theoretic treatment. However, in the sequent calculus, we again have a
remarkably simple characterisation:

Theorem (folklore)

• LK, without w rules, is sound and complete for basic relevant logic.
• Cut-elimination still holds.

For a concise introduction, consult:
• [Mares, 2014]

27 / 42



Relevan(t+ce) logic

Remember theorems like Pierce’s law or the Drinker’s paradox:

((A→ B)→ A)→ A
∃x.(D(x)→ ∀y.D(y))

These were counterintuitive since their implications did not reflect any causality
from premiss to conclusion. They were material.

Relevant logic (or Relevance logic) arose in the early 20th century. It is an attempt to
remedy this by rejecting the law of ex falso quod libet.

Initially proposed in a Hilbert-Frege setting, relevant logic lacked a rigorous
proof-theoretic treatment. However, in the sequent calculus, we again have a
remarkably simple characterisation:

Theorem (folklore)

• LK, without w rules, is sound and complete for basic relevant logic.
• Cut-elimination still holds.

For a concise introduction, consult:
• [Mares, 2014]

27 / 42



Relevan(t+ce) logic

Remember theorems like Pierce’s law or the Drinker’s paradox:

((A→ B)→ A)→ A
∃x.(D(x)→ ∀y.D(y))

These were counterintuitive since their implications did not reflect any causality
from premiss to conclusion. They were material.

Relevant logic (or Relevance logic) arose in the early 20th century. It is an attempt to
remedy this by rejecting the law of ex falso quod libet.

Initially proposed in a Hilbert-Frege setting, relevant logic lacked a rigorous
proof-theoretic treatment. However, in the sequent calculus, we again have a
remarkably simple characterisation:

Theorem (folklore)

• LK, without w rules, is sound and complete for basic relevant logic.
• Cut-elimination still holds.

For a concise introduction, consult:
• [Mares, 2014]

27 / 42



Relevan(t+ce) logic

Remember theorems like Pierce’s law or the Drinker’s paradox:

((A→ B)→ A)→ A
∃x.(D(x)→ ∀y.D(y))

These were counterintuitive since their implications did not reflect any causality
from premiss to conclusion. They were material.

Relevant logic (or Relevance logic) arose in the early 20th century. It is an attempt to
remedy this by rejecting the law of ex falso quod libet.

Initially proposed in a Hilbert-Frege setting, relevant logic lacked a rigorous
proof-theoretic treatment.

However, in the sequent calculus, we again have a
remarkably simple characterisation:

Theorem (folklore)

• LK, without w rules, is sound and complete for basic relevant logic.
• Cut-elimination still holds.

For a concise introduction, consult:
• [Mares, 2014]

27 / 42



Relevan(t+ce) logic

Remember theorems like Pierce’s law or the Drinker’s paradox:

((A→ B)→ A)→ A
∃x.(D(x)→ ∀y.D(y))

These were counterintuitive since their implications did not reflect any causality
from premiss to conclusion. They were material.

Relevant logic (or Relevance logic) arose in the early 20th century. It is an attempt to
remedy this by rejecting the law of ex falso quod libet.

Initially proposed in a Hilbert-Frege setting, relevant logic lacked a rigorous
proof-theoretic treatment. However, in the sequent calculus, we again have a
remarkably simple characterisation:

Theorem (folklore)

• LK, without w rules, is sound and complete for basic relevant logic.
• Cut-elimination still holds.

For a concise introduction, consult:
• [Mares, 2014]

27 / 42



Relevan(t+ce) logic

Remember theorems like Pierce’s law or the Drinker’s paradox:

((A→ B)→ A)→ A
∃x.(D(x)→ ∀y.D(y))

These were counterintuitive since their implications did not reflect any causality
from premiss to conclusion. They were material.

Relevant logic (or Relevance logic) arose in the early 20th century. It is an attempt to
remedy this by rejecting the law of ex falso quod libet.

Initially proposed in a Hilbert-Frege setting, relevant logic lacked a rigorous
proof-theoretic treatment. However, in the sequent calculus, we again have a
remarkably simple characterisation:

Theorem (folklore)

• LK, without w rules, is sound and complete for basic relevant logic.
• Cut-elimination still holds.

For a concise introduction, consult:
• [Mares, 2014]

27 / 42



Linear logic

Jean-Yves Girard proposed linear logic in the ’80s,
to model resource-sensitive computation.

Linear logic goes further than relevant logic in
terms of restricting the structural rules, rejecting:

Γ, A, A ` ∆
c-l

Γ, A ` ∆

Γ ` ∆, A, A
c-r

Γ ` ∆, A

Instead, we recover different versions of the con-
nectives based on their usually equivalent rules.

Theorem (Girard ’87)
Linear logic (LL) enjoys cut-elimination.

This means that LL is meaningful since, in particular, it must be consistent: if the
empty sequent were derivable, what would be the last step in a cut-free proof?

There is a lot more to say about LL. Here is a concise introduction:
• [Di Cosmo and Miller, 2016]
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Lambek calculus

The Lambek calculus is a substructural logic obtained
by combining resource-sensitivity with intuitionism.

Furthermore, it restricts sequents to lists where order
matters. I.e., it rejects:

Γ ` ∆, B, A,∆′

Γ ` ∆, A,B,∆′
Γ, B, A,Γ′ ` ∆

Γ, A, B,Γ′ ` ∆

This calculus is incredibly important in mathematics and linguistics:
• In mathematics, it is modelled by residuated lattices.
• In linguistics, it is modelled by categorical grammars.

Once again. . .

Theorem
The Lambek calculus enjoys cut-elimination, and many of the usual corollaries.

For more information, consult:
• [Moortgat, 2014].
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A richer semantics

Classical propositional logic had a very simple Boolean
semantics.

For richer logics such as intuitionistic logic, one must do
some more work. As we already saw, we may arrive at
semantics via realisers or proof interpretations.

Saul Kripke and André Joyal proposed in the ’50s and
’60s a semantics based on relational structures.

Theorem (informally)
LJ is sound and complete over preorder structures with a
Boolean valuation.

This has lead to fundamental advances in philosophy,
mathematics and computer science.

31 / 42



A richer semantics

Classical propositional logic had a very simple Boolean
semantics.

For richer logics such as intuitionistic logic, one must do
some more work. As we already saw, we may arrive at
semantics via realisers or proof interpretations.

Saul Kripke and André Joyal proposed in the ’50s and
’60s a semantics based on relational structures.

Theorem (informally)
LJ is sound and complete over preorder structures with a
Boolean valuation.

This has lead to fundamental advances in philosophy,
mathematics and computer science.

31 / 42



A richer semantics

Classical propositional logic had a very simple Boolean
semantics.

For richer logics such as intuitionistic logic, one must do
some more work. As we already saw, we may arrive at
semantics via realisers or proof interpretations.

Saul Kripke and André Joyal proposed in the ’50s and
’60s a semantics based on relational structures.

Theorem (informally)
LJ is sound and complete over preorder structures with a
Boolean valuation.

This has lead to fundamental advances in philosophy,
mathematics and computer science.

31 / 42



A richer semantics

Classical propositional logic had a very simple Boolean
semantics.

For richer logics such as intuitionistic logic, one must do
some more work. As we already saw, we may arrive at
semantics via realisers or proof interpretations.

Saul Kripke and André Joyal proposed in the ’50s and
’60s a semantics based on relational structures.

Theorem (informally)
LJ is sound and complete over preorder structures with a
Boolean valuation.

This has lead to fundamental advances in philosophy,
mathematics and computer science.

31 / 42



A richer semantics

Classical propositional logic had a very simple Boolean
semantics.

For richer logics such as intuitionistic logic, one must do
some more work. As we already saw, we may arrive at
semantics via realisers or proof interpretations.

Saul Kripke and André Joyal proposed in the ’50s and
’60s a semantics based on relational structures.

Theorem (informally)
LJ is sound and complete over preorder structures with a
Boolean valuation.

This has lead to fundamental advances in philosophy,
mathematics and computer science.

31 / 42



Modal logics

Modal logic emerged in the early 20th century and constituted a competing
approach to constructivism.

They add to classical propositional logic two dual modalities � and ♦:

�A : “It is necessary that A”
♦A : “It is possible that A”

Due to motivations from philosophy and computer science there are now countless
different versions of modal logic that are widely studied:

For a concise introduction, see:

• [Garson, 2016].

For a historical perspective, in particular con-
trasting the syntactic tradition, à la Lewis, and
the semantic tradition, à la Kripke-Joyal, see:

• [Ballarin, 2017].
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Gentzen calculi for modal logics

The Gentzen approach has been remarkably successful. A calculus for K is obtained
by adding a single rule to LK (by De Morgan duality of � and ♦):

Γ ` A
k
�Γ ` �A

Extensions such as S4 are similarly handled by adding:

Γ, A ` ∆
t
Γ,�A ` ∆

�Γ ` A
4
�Γ ` �A

Remarkably, these calculi again enjoy cut-elimination:

Theorem
Cut-elimination holds for the sequent calculi for K and S4.

Corollary

• Interpolation for modal logics.
• Satisfiability solving for modal logics.
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Every dream must end

However, this is where the story becomes difficult.

For the logic S5, we searched for a long time to find a cut-free calculus. We failed.

But out of that effort rose a new methodology for proof systems, that is currently
still in its formative stages.

Theorem (Mints, Pottinger, Avron, informally)
There is a cut-free calculus that manipulates ‘lists of lists’ which is sound and complete for S5.

Since this work, uniform and modular treatments have been found for all logics in
the modal cube (and beyond!) in several other variations of sequent:

• Sequents are lists.
• Hypersequents are lists of lists.
• Nested sequents are trees.
• Labelled sequents are graphs.
• . . .
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Where is structural proof theory today

As we speak, there is a revolution under way towards a proof theory:

• with more structure. (e.g. (hyper + labelled + nested) sequents, cyclic proofs)
• that is more compositional. (e.g. deep inference, categorical logic, natural

deduction, proof nets)
• that is more symmetric. (e.g.display calculus, deep inference)

In the same way that Gentzen broke away from Hilbert-Frege systems to obtain
powerful results, these advances have further extended the scope of proof theory.

Let us look at two recent (very personally biased) developments. . .

36 / 42



Where is structural proof theory today

As we speak, there is a revolution under way towards a proof theory:

• with more structure. (e.g. (hyper + labelled + nested) sequents, cyclic proofs)
• that is more compositional. (e.g. deep inference, categorical logic, natural

deduction, proof nets)
• that is more symmetric. (e.g.display calculus, deep inference)

In the same way that Gentzen broke away from Hilbert-Frege systems to obtain
powerful results, these advances have further extended the scope of proof theory.

Let us look at two recent (very personally biased) developments. . .

36 / 42



Where is structural proof theory today

As we speak, there is a revolution under way towards a proof theory:

• with more structure. (e.g. (hyper + labelled + nested) sequents, cyclic proofs)
• that is more compositional. (e.g. deep inference, categorical logic, natural

deduction, proof nets)
• that is more symmetric. (e.g.display calculus, deep inference)

In the same way that Gentzen broke away from Hilbert-Frege systems to obtain
powerful results, these advances have further extended the scope of proof theory.

Let us look at two recent (very personally biased) developments. . .

36 / 42



Where is structural proof theory today

As we speak, there is a revolution under way towards a proof theory:

• with more structure. (e.g. (hyper + labelled + nested) sequents, cyclic proofs)
• that is more compositional. (e.g. deep inference, categorical logic, natural

deduction, proof nets)
• that is more symmetric. (e.g.display calculus, deep inference)

In the same way that Gentzen broke away from Hilbert-Frege systems to obtain
powerful results, these advances have further extended the scope of proof theory.

Let us look at two recent (very personally biased) developments. . .

36 / 42



Deep inference

Deep inference is a methodology underlying sev-
eral of the developments we have seen.

It was first proposed by Guglielmi in the late ’90s:

1 “inference rules should operate on any connective
in a formula”

2 “there should be no distinction between object level
and meta level”

It is the second point, that gives rise to compositionality and symmetry which is the
most revolutionary.

Achievements include:

• Modular proof-theoretic treatments of substructural and modal logics.
• Cut-elimination proofs, including finer extraction of interpolants and

witnesses.
• Much shorter proofs!
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Structure at the level of a proof

Changing the lines of a proof has yielded tremendous success, as we have seen.

If we want to reason inductively or over fixed points, we need to add some more
structure, but this time at the level of a proof graph.

A cyclic proof is one that allows cyclic reasoning. This can sometimes be
meaningful!

...
•

b2 = 2c2 `
c < a, 4c2 = 2b2 `

∃x < a.a = 2x, a2 = 2b2 `
•

a2 = 2b2 `
` ∀x, y. x2 6= 2y2

We now have proof theoretic treatments of:
• Fragments of the modal µ-calculus.
• Substructural logics with fixed points.
• First-order logic with inductive

definitions
• Fragments of arithmetic.

There are an increasing number of emerging
applications in computer science and mathemat-
ics.
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Thank you all!
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