Proof theory of arithmetic

Lecture 5 - Perspectives and further directions

Anupam Das

University of Birmingham

34th European Summer School in Logic, Language and Information

> Ljubljana, Slovenia 11 August 2023

These slides are available at http://www.anupamdas.com/esslli23.

Outline

1 Recursion complexity vs induction complexity

2 Higher type recursion

3 Beyond PA and $\varepsilon_{\rm o}$

4 Conclusions

5 Break: questions and exercises

6 References

Example: Ackermann-Péter, logically

$$\begin{array}{l} A(0,y) = sy \\ A(sx, 0) = A(x, 1) \\ A(sx, sy) = A(x, A(sery)) \end{array}$$

Write $a(x, y, z) = A(x, A(sery))$

Write $a(x, y, z) = A(x, A(sery))$

Write $a(x, y, z) = A(x, A(sery))$

PA $\vdash \forall x, y \exists z = a(x, y, z)$

Prove $\forall y \exists z = a(x, y, z) = by \quad \text{Ind on } x$

 $x=0: \text{ on inget } y \text{ set } z = sy$.

It turns out that we can refine our results to account for logical complexity.

Writing $I\Sigma_n$ for the fragment of PA with induction on only Σ_n -formulas:

Theorem

 $I\Sigma_n$ has 'proof theoretic ordinal' ω_{n+1} .

Proof idea.

- The restriction of \vdash_{PA} to $I\Sigma_n$ requires only Σ_n and Π_n formulas, by a partial cut-elimination in PA.
- We only need induction on Σ_r -formulas to prove $<_{r+1}$ -wf.

An excellent reference:

• [Takeuti, 1975]

(Blank slide)

Outline

1 Recursion complexity vs induction complexity

Higher type recursion

3 Beyond PA and ε_0

4 Conclusions

5 Break: questions and exercises

6 References

There is another notable successful realisation of Hilbert's Program: the Dialectica functional interpretation.

Here, instead of extending PRA by recursion on higher ordinals, we allow the recursive definition of higher order functionals.

An excellent reference:

• [Avigad and Feferman, 1998]

In recent years there have been astonishing applications via **proof mining**. An excellent reference:

• [Kohlenbach, 2008]

Finite types

Definition (Finite types)

The **finite types** (or **simple types**), written σ , τ etc., are generated by:

 σ, τ, \ldots ::= N | $\sigma \to \tau$

Think of types as extra sorts in our logic. We may extend the standard model \mathfrak{N} to a higher **type structure** by setting:

- $N^{\mathfrak{N}} := \mathbb{N}$
- $(\sigma \to \tau)^{\mathfrak{N}} := \{ f : \sigma^{\mathfrak{N}} \to \tau^{\mathfrak{N}} \}$

Definition (Informal)

System T extends PRA by appropriate constants and **primitive recursion at all finite types**.

NB: We are being imprecise about higher-type equality here!

Example: Ackermann-Péter, again!

The Dialectica functional interpretation

Gödel, 1958

For each formula φ of \mathcal{L}_A , there is a quantifier-free T-formula $\varphi_D^N(x, y)$ and a T-term t(x) s.t.:

$$\mathsf{PA} \vdash \varphi \implies \mathsf{T} \vdash \varphi_D^N(x, t(x))$$

The Dialectica functional interpretation

Gödel, 1958

For each formula φ of \mathcal{L}_A , there is a quantifier-free T-formula $\varphi_D^N(x, y)$ and a T-term t(x) s.t.:

$$\mathsf{PA} \vdash \varphi \implies \mathsf{T} \vdash \varphi_D^N(x, t(x))$$

This finitistically reduces the consistency of PA to the termination of higher-typed programming language.

Level-by-level refinement

Outline

1 Recursion complexity vs induction complexity

2 Higher type recursion

4 Conclusions

5 Break: questions and exercises

6 References

Gentzen in 1938

"Indeed, it seems not entirely unreasonable to me to suppose that contradictions might possibly be concealed even in classical analysis. . . . the most important [consistency] proof of all in practice, that for analysis, is still outstanding."

Gentzen in 1938

"Indeed, it seems not entirely unreasonable to me to suppose that contradictions might possibly be concealed even in classical analysis. . . . the most important [consistency] proof of all in practice, that for analysis, is still outstanding."

85 YEARS LATER: this is still the *biggest open problem* in proof theory!

The language \mathcal{L}_2 of PA2 admits a sort not only for $\mathbb{N}(x, y, ...)$, but also type 1 objects (sets, functions, etc.) (X, Y, ...).

Crucially we have a comprehension axiom,

 $\exists X \,\forall x \,(X(x) \leftrightarrow \varphi(x))$

for each formula $\varphi(x)$.

We can think of *X* as:

- A defined predicate.
- A set of natural numbers, with X(x) meaning $x \in X$.
- A real number, with X(x) being the x^{th} bit of X.

Reduction to pure logic

Unlike PA, we can reduce PA2 to pure second-order logic:

$$N(x) \iff \forall X(X(0) \land \forall y(X(y) \rightarrow X(sy)) \rightarrow X(x))$$

This gives us a definition of \mathbb{N} whence we recover the induction principle.

This reduces Gentzen's problem, consistency of PA2 to cut-elimination for second-order logic...

Reduction to pure logic

Unlike PA, we can reduce PA2 to pure second-order logic:

$$N(x) \iff \forall X(X(0) \land \forall y(X(y) \rightarrow X(sy)) \rightarrow X(x))$$

This gives us a definition of \mathbb{N} whence we recover the induction principle.

This reduces Gentzen's problem, consistency of PA2 to cut-elimination for second-order logic...

...but there is no free lunch:

Takeuti's conjecture, 1953

Does cut-elimination hold for second-order logic?

Enter Tait, Takahashi and Prawitz

Building on foundational work of Schütte:

Theorem (Tait '66) *Cut is admissible for second-order logic.*

Theorem (Takahashi '67, Prawitz '68)

Cut is admissible in Church's simple type theory, i.e. at all finite types.

Enter Tait, Takahashi and Prawitz

Building on foundational work of Schütte:

Theorem (Tait '66) *Cut is admissible for second-order logic.*

Theorem (Takahashi '67, Prawitz '68)

Cut is admissible in Church's simple type theory, i.e. at all finite types.

However, these arguments are somewhat unsatisfactory:

- They are *non-explicit*: we have no proof-theoretic ordinal for PA2.
- They are *admissibility* results: there is no computational process.

The success of proof interpretations

Theorem (Spector '62)

PA2 is ND-interpreted into an extension of T by **bar recursion**.

Theorem (Girard '71)

PA2 is ND-interpreted into a *second-order* extension of T.

The story since Gentzen: the first steps into impredicativity

There has nonetheless been significant progress since the days of Gentzen:

Takeuti '67 Ordinal analysis of theories of Π_1^1 -comprehension.

Rathjen '90s-'00s Ordinal analysis of theories of Π_2^1 -comprehension.

An excellent reference:

• [Rathjen and Sieg, 2022]

"He once confided in me that he was really quite content since now he at last had time to think about a consistency proof for analysis. He was in fact fully convinced that he would succeed in carrying out such a proof."

Outline

1 Recursion complexity vs induction complexity

Higher type recursion

3 Beyond PA and ε_0

4 Conclusions

5 Break: questions and exercises

6 References

Conclusions

There are many other legacies of proof theory we have not discussed:1

- The application of proof theory to complexity theory.
- The application of proof theory to set theory.
- The application of proof theory to type theory and constructive mathematics.

These all constitute highly active areas of research, that are certainly beyond the scope of this course!²

¹...and I did not have time to write slides about!

²...but you can ask me for references.

Conclusions

There are many other legacies of proof theory we have not discussed:1

- The application of proof theory to complexity theory.
- The application of proof theory to set theory.
- The application of proof theory to type theory and constructive mathematics.

These all constitute highly active areas of research, that are certainly beyond the scope of this course!²

Thank you.

¹...and I did not have time to write slides about!

²...but you can ask me for references.

Outline

1 Recursion complexity vs induction complexity

Higher type recursion

3 Beyond PA and ε_0

4 Conclusions

5 Break: questions and exercises

6 References

Exercises

- We can think of functions N → N as *streams* (i.e. infinite sequences) of natural numbers. Use (higher-order) primitive recursion to define functionals:
 - $hd: (\mathbb{N} \to \mathbb{N}) \to \mathbb{N}$ returning the first element of a stream input.
 - tl: $(\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$ by $(n_i)_{i \ge 0} \mapsto (n_i)_{i \ge 1}$.
- Show that the two recursive definitions of the Ackermann-Péter function, A (by higher-ordinal recursion) and A' (by higher-type recursion) coincide.
- Show that second-order logic with equality can be interpreted in second-order logic *without* equality.
- A function *f* on the ordinals is **normal** if:
 - (Strict monotonicity.) $\alpha < \beta \implies f(\alpha) < f(\beta)$.
 - (Continuity.) λ is a limit ordinal $\implies f(\lambda) = \sup_{\alpha \leq \lambda} (f(\alpha)).$

Show that:

- (a) f commutes with suprema, i.e. $f(\sup A) = \sup_{\alpha \in A} f(\alpha)$.
- **b** $f(\alpha) \ge \alpha$ for all ordinals α .
- f has arbitrarily high fixed points, i.e. for all α there is $\gamma \ge \alpha$ with $f(\gamma) = \gamma$.
- **§** (Long.) Show that each primitive recursive function $f(\vec{x})$ is dominated by $A(m, \max(\vec{x}))$, for some *m* ∈ \mathbb{N} . Conclude that *A* is not primitive recursive.
- Write IΣ₁ and IΠ₁ for the fragments of PA with induction on only Σ₁-formulas and Π₁-formulas, respectively. Show that IΣ₁ = IΠ₁.

(Hard.) Show that $I\Sigma_1$ is even equal to the fragment of PA with induction only on *Boolean combinations* of Σ_1 -formulas.

Outline

1 Recursion complexity vs induction complexity

2 Higher type recursion

3 Beyond PA and ε_0

4 Conclusions

5 Break: questions and exercises

References I

Avigad, J. and Feferman, S. (1998).

Gödel's functional ("Dialectica") interpretation.

In Buss, S. R., editor, Handbook of Proof Theory, volume 137, pages 337–405. Elsevier.

Kohlenbach, U. (2008).

Applied Proof Theory - Proof Interpretations and their Use in Mathematics. Springer Monographs in Mathematics. Springer.

Rathjen, M. and Sieg, W. (2022).

Proof Theory.

In Zalta, E. N. and Nodelman, U., editors, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, Winter 2022 edition.

Takeuti, G. (1975). Proof Theory. New York, N.Y., U.S.A.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.